🚨🚨🚨 [NLLB Tokenizer] Fix the prefix tokens 🚨🚨🚨 (#22313)

* fix the prefix tokens

* update fast and test values

* add legacy behaviour

Co-authored-by: sgugger <sylvain.gugger@gmail.com>

* update disclaimer, linkissue PR and behaviral changes

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <hi@lysand.re>

* styling

* make a quote

* quote this time

---------

Co-authored-by: sgugger <sylvain.gugger@gmail.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
This commit is contained in:
Arthur 2023-04-04 14:53:06 +02:00 committed by GitHub
parent ad5e9b6c6a
commit 00b5887b94
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 111 additions and 23 deletions

View File

@ -12,8 +12,45 @@ specific language governing permissions and limitations under the License.
# NLLB # NLLB
**DISCLAIMER:** If you see something strange, file a [Github Issue](https://github.com/huggingface/transformers/issues/new?assignees=&labels=bug&template=bug-report.yml) and assign **DISCLAIMER:** The default behaviour for the tokenizer has recently been fixed (and thus changed)!
@LysandreJik
The previous version adds `[self.eos_token_id, self.cur_lang_code]` at the end of the token sequence for both target and source tokenization. This is wrong as the NLLB paper mentions (page 48, 6.1.1. Model Architecture) :
*Note that we prefix the source sequence with the source language, as opposed to the target
language as previously done in several works (Arivazhagan et al., 2019; Johnson et al.,
2017). This is primarily because we prioritize optimizing zero-shot performance of our
model on any pair of 200 languages at a minor cost to supervised performance.*
Previous behaviour:
```python
>>> from transformers import NllbTokenizer
>>> tokenizer = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
>>> tokenizer("How was your day?").input_ids
[13374, 1398, 4260, 4039, 248130, 2, 256047]
>>> # 2: '</s>'
>>> # 256047 : 'eng_Latn'
```
New behaviour
```python
>>> from transformers import NllbTokenizer
>>> tokenizer = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
>>> tokenizer("How was your day?").input_ids
[256047, 13374, 1398, 4260, 4039, 248130, 2]
```
Enabling the old behaviour can be done as follows:
```python
>>> from transformers import NllbTokenizer
>>> tokenizer = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M", legacy_behaviour=True)
```
For more details, feel free to check the linked [PR](https://github.com/huggingface/transformers/pull/22313) and [Issue](https://github.com/huggingface/transformers/issues/19943).
## Overview of NLLB ## Overview of NLLB

View File

@ -140,12 +140,14 @@ class NllbTokenizer(PreTrainedTokenizer):
tgt_lang=None, tgt_lang=None,
sp_model_kwargs: Optional[Dict[str, Any]] = None, sp_model_kwargs: Optional[Dict[str, Any]] = None,
additional_special_tokens=None, additional_special_tokens=None,
legacy_behaviour=False,
**kwargs, **kwargs,
): ):
# Mask token behave like a normal word, i.e. include the space before it # Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
self.legacy_behaviour = legacy_behaviour
super().__init__( super().__init__(
bos_token=bos_token, bos_token=bos_token,
@ -160,13 +162,13 @@ class NllbTokenizer(PreTrainedTokenizer):
tgt_lang=tgt_lang, tgt_lang=tgt_lang,
additional_special_tokens=additional_special_tokens, additional_special_tokens=additional_special_tokens,
sp_model_kwargs=self.sp_model_kwargs, sp_model_kwargs=self.sp_model_kwargs,
legacy_behaviour=legacy_behaviour,
**kwargs, **kwargs,
) )
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(str(vocab_file)) self.sp_model.Load(str(vocab_file))
self.vocab_file = vocab_file self.vocab_file = vocab_file
# Original fairseq vocab and spm vocab must be "aligned": # Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ----
@ -388,13 +390,27 @@ class NllbTokenizer(PreTrainedTokenizer):
return self.set_tgt_lang_special_tokens(self.tgt_lang) return self.set_tgt_lang_special_tokens(self.tgt_lang)
def set_src_lang_special_tokens(self, src_lang) -> None: def set_src_lang_special_tokens(self, src_lang) -> None:
"""Reset the special tokens to the source lang setting. No prefix and suffix=[eos, src_lang_code].""" """Reset the special tokens to the source lang setting.
- In legacy mode: No prefix and suffix=[eos, src_lang_code].
- In default mode: Prefix=[src_lang_code], suffix = [eos]
"""
self.cur_lang_code = self.lang_code_to_id[src_lang] self.cur_lang_code = self.lang_code_to_id[src_lang]
self.prefix_tokens = [] if self.legacy_behaviour:
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code] self.prefix_tokens = []
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code]
else:
self.prefix_tokens = [self.cur_lang_code]
self.suffix_tokens = [self.eos_token_id]
def set_tgt_lang_special_tokens(self, lang: str) -> None: def set_tgt_lang_special_tokens(self, lang: str) -> None:
"""Reset the special tokens to the target language setting. No prefix and suffix=[eos, tgt_lang_code].""" """Reset the special tokens to the target lang setting.
- In legacy mode: No prefix and suffix=[eos, tgt_lang_code].
- In default mode: Prefix=[tgt_lang_code], suffix = [eos]
"""
self.cur_lang_code = self.lang_code_to_id[lang] self.cur_lang_code = self.lang_code_to_id[lang]
self.prefix_tokens = [] if self.legacy_behaviour:
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code] self.prefix_tokens = []
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code]
else:
self.prefix_tokens = [self.cur_lang_code]
self.suffix_tokens = [self.eos_token_id]

View File

@ -151,11 +151,12 @@ class NllbTokenizerFast(PreTrainedTokenizerFast):
src_lang=None, src_lang=None,
tgt_lang=None, tgt_lang=None,
additional_special_tokens=None, additional_special_tokens=None,
legacy_behaviour=False,
**kwargs, **kwargs,
): ):
# Mask token behave like a normal word, i.e. include the space before it # Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
self.legacy_behaviour = legacy_behaviour
super().__init__( super().__init__(
vocab_file=vocab_file, vocab_file=vocab_file,
tokenizer_file=tokenizer_file, tokenizer_file=tokenizer_file,
@ -169,6 +170,7 @@ class NllbTokenizerFast(PreTrainedTokenizerFast):
src_lang=src_lang, src_lang=src_lang,
tgt_lang=tgt_lang, tgt_lang=tgt_lang,
additional_special_tokens=additional_special_tokens, additional_special_tokens=additional_special_tokens,
legacy_behaviour=legacy_behaviour,
**kwargs, **kwargs,
) )
@ -287,10 +289,18 @@ class NllbTokenizerFast(PreTrainedTokenizerFast):
return self.set_tgt_lang_special_tokens(self.tgt_lang) return self.set_tgt_lang_special_tokens(self.tgt_lang)
def set_src_lang_special_tokens(self, src_lang) -> None: def set_src_lang_special_tokens(self, src_lang) -> None:
"""Reset the special tokens to the source lang setting. No prefix and suffix=[eos, src_lang_code].""" """Reset the special tokens to the source lang setting.
- In legacy mode: No prefix and suffix=[eos, src_lang_code].
- In default mode: Prefix=[src_lang_code], suffix = [eos]
"""
self.cur_lang_code = self.convert_tokens_to_ids(src_lang) self.cur_lang_code = self.convert_tokens_to_ids(src_lang)
self.prefix_tokens = []
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code] if self.legacy_behaviour:
self.prefix_tokens = []
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code]
else:
self.prefix_tokens = [self.cur_lang_code]
self.suffix_tokens = [self.eos_token_id]
prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens) prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens)
suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens) suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens)
@ -302,10 +312,17 @@ class NllbTokenizerFast(PreTrainedTokenizerFast):
) )
def set_tgt_lang_special_tokens(self, lang: str) -> None: def set_tgt_lang_special_tokens(self, lang: str) -> None:
"""Reset the special tokens to the target language setting. No prefix and suffix=[eos, tgt_lang_code].""" """Reset the special tokens to the target lang setting.
- In legacy mode: No prefix and suffix=[eos, tgt_lang_code].
- In default mode: Prefix=[tgt_lang_code], suffix = [eos]
"""
self.cur_lang_code = self.convert_tokens_to_ids(lang) self.cur_lang_code = self.convert_tokens_to_ids(lang)
self.prefix_tokens = [] if self.legacy_behaviour:
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code] self.prefix_tokens = []
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code]
else:
self.prefix_tokens = [self.cur_lang_code]
self.suffix_tokens = [self.eos_token_id]
prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens) prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens)
suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens) suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens)

View File

@ -305,6 +305,7 @@ class NllbDistilledIntegrationTest(unittest.TestCase):
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
] ]
expected_src_tokens = [ expected_src_tokens = [
256047,
16297, 16297,
134408, 134408,
8165, 8165,
@ -319,7 +320,6 @@ class NllbDistilledIntegrationTest(unittest.TestCase):
108, 108,
49486, 49486,
2, 2,
256047,
] ]
@classmethod @classmethod
@ -355,8 +355,8 @@ class NllbDistilledIntegrationTest(unittest.TestCase):
assert isinstance(src_text[0], str) assert isinstance(src_text[0], str)
desired_max_length = 10 desired_max_length = 10
ids = self.tokenizer(src_text, max_length=desired_max_length, truncation=True).input_ids[0] ids = self.tokenizer(src_text, max_length=desired_max_length, truncation=True).input_ids[0]
self.assertEqual(ids[-2], 2) self.assertEqual(ids[-1], 2)
self.assertEqual(ids[-1], EN_CODE) self.assertEqual(ids[0], EN_CODE)
self.assertEqual(len(ids), desired_max_length) self.assertEqual(len(ids), desired_max_length)
def test_mask_token(self): def test_mask_token(self):
@ -389,10 +389,10 @@ class NllbDistilledIntegrationTest(unittest.TestCase):
self.assertEqual((2, 15), batch.attention_mask.shape) self.assertEqual((2, 15), batch.attention_mask.shape)
result = batch.input_ids.tolist()[0] result = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens, result) self.assertListEqual(self.expected_src_tokens, result)
self.assertEqual(2, batch.decoder_input_ids[0, -1]) # EOS self.assertEqual(RO_CODE, batch.decoder_input_ids[0, 0]) # EOS
# Test that special tokens are reset # Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens, []) self.assertEqual(self.tokenizer.prefix_tokens, [EN_CODE])
self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id, EN_CODE]) self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id])
def test_seq2seq_max_length(self): def test_seq2seq_max_length(self):
batch = self.tokenizer(self.src_text, padding=True, truncation=True, max_length=3, return_tensors="pt") batch = self.tokenizer(self.src_text, padding=True, truncation=True, max_length=3, return_tensors="pt")
@ -419,9 +419,27 @@ class NllbDistilledIntegrationTest(unittest.TestCase):
nested_simplify(inputs), nested_simplify(inputs),
{ {
# A, test, EOS, en_XX # A, test, EOS, en_XX
"input_ids": [[70, 7356, 2, 256047]], "input_ids": [[256047, 70, 7356, 2]],
"attention_mask": [[1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1]],
# ar_AR # ar_AR
"forced_bos_token_id": 256057, "forced_bos_token_id": 256057,
}, },
) )
@require_torch
def test_legacy_behaviour(self):
self.tokenizer.legacy_behaviour = True
inputs = self.tokenizer(
"UN Chief says there is no military solution in Syria", src_lang="eng_Latn", tgt_lang="fra_Latn"
)
self.assertEqual(
inputs.input_ids, [16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2, 256047]
)
self.tokenizer.legacy_behaviour = False
inputs = self.tokenizer(
"UN Chief says there is no military solution in Syria", src_lang="eng_Latn", tgt_lang="fra_Latn"
)
self.assertEqual(
inputs.input_ids, [256047, 16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2]
)