Fix distributed evaluation (#10795)

* Fix distributed evaluation

* Use logger
This commit is contained in:
Sylvain Gugger 2021-03-18 13:12:04 -04:00 committed by GitHub
parent 9352b5151a
commit 008672e6e5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 13 additions and 3 deletions

View File

@ -690,7 +690,7 @@ class Trainer:
"""
Helper to get number of samples in a :class:`~torch.utils.data.DataLoader` by accessing its dataset.
Will raise an exception if the underlying dataset dese not implement method :obj:`__len__`
Will raise an exception if the underlying dataset does not implement method :obj:`__len__`
"""
return len(dataloader.dataset)
@ -1812,8 +1812,13 @@ class Trainer:
eval_losses_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=batch_size)
if not prediction_loss_only:
preds_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=batch_size)
labels_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=batch_size)
# The actual number of eval_sample can be greater than num_examples in distributed settings (when we pass
# a batch size to the sampler)
make_multiple_of = None
if hasattr(dataloader, "sampler") and isinstance(dataloader.sampler, SequentialDistributedSampler):
make_multiple_of = dataloader.sampler.batch_size
preds_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=make_multiple_of)
labels_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=make_multiple_of)
model.eval()

View File

@ -97,6 +97,11 @@ if __name__ == "__main__":
def compute_metrics(p: EvalPrediction) -> Dict:
sequential = list(range(len(dataset)))
success = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential
if not success and training_args.local_rank == 0:
logger.warning(
"Predictions and/or labels do not match expected results:\n - predictions: "
f"{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}"
)
return {"success": success}
trainer = Trainer(