mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00
Add DBRX Model (#29921)
* wip * fix __init__.py * add docs * Apply suggestions from code review Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * address comments 1 * work on make fixup * pass configs down * add sdpa attention * remove DbrxBlock * add to configuration_auto * docstring now passes formatting test * fix style * update READMEs * add dbrx to modeling_auto * make fix-copies generated this * add DBRX_PRETRAINED_CONFIG_ARCHIVE_MAP * config docstring passes formatting test * rename moe_loss_weight to router_aux_loss_coef * add to flash-attn documentation * fix model-path in tests * Explicitly make `"suli"` the default `ffn_act_fn` Co-authored-by: Wing Lian <wing.lian@gmail.com> * default to using router_aux_loss_coef over ffn_config[moe_loss_weight] * fix _flash_attn_uses_top_left_mask and is_causal * fix tests path * don't use token type IDs * follow Llama and remove token_type_ids from test * init ConfigTester differently so tests pass * remove multiple choice test * remove question + answer test * remove sequence classification test * remove token classification test * copy Llama tests and remove token_type_ids from test inputs * do not test pruning or headmasking; style code * add _tied_weights_keys parameter to pass test * add type hints * fix type check * update config tester * remove masked_lm test * remove encoder tests * initialize DbrxModelTester with correct params * style * torch_dtype does not rely on torch * run make fixup, fix-copies * use https://huggingface.co/v2ray/dbrx-base-fixed/blob/main/modeling_dbrx.py * add copyright info * fix imports and DbrxRotaryEmbedding * update DbrxModel docstring * use copies * change model path in docstring * use config in DbrxFFN * fix flashattention2, sdpaattention * input config to DbrXAttention, DbrxNormAttentionNorm * more fixes * fix * fix again! * add informative comment * fix ruff? * remove print statement + style * change doc-test * fix doc-test * fix docstring * delete commented out text * make defaults match dbrx-instruct * replace `router_aux_loss_coef` with `moe_loss_weight` * is_decoder=True * remove is_decoder from configtester * implement sdpa properly * make is_decoder pass tests * start on the GenerationTesterMixin tests * add dbrx to sdpa documentation * skip weight typing test * style * initialize smaller model Co-authored-by: Matt <Rocketknight1@users.noreply.github.com> * Add DBRX to toctree * skip test_new_cache_format * make config defaults smaller again * add pad_token_id * remove pad_token_id from config * Remove all references to DBRX_PRETRAINED_CONFIG_ARCHIVE_MAP * Update src/transformers/models/dbrx/__init__.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update src/transformers/models/dbrx/modeling_dbrx.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update docs/source/en/model_doc/dbrx.md Co-authored-by: Matt <Rocketknight1@users.noreply.github.com> * Update src/transformers/models/dbrx/configuration_dbrx.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update docs/source/en/model_doc/dbrx.md Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * fix typo * Apply suggestions from code review Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * update docs, fix configuration_auto.py * address pr comments * remove is_decoder flag * slice * fix requires grad * remove grad * disconnect differently * remove grad * enable grads * patch * detach expert * nissan al ghaib * Update modeling_dbrx.py * Update src/transformers/models/dbrx/modeling_dbrx.py Co-authored-by: Matt <Rocketknight1@users.noreply.github.com> * replace "Gemma" with "Dbrx" * remove # type: ignore * don't hardcode vocab_size * remove ToDo * Re-add removed idefics2 line * Update test to use tiny-random! * Remove TODO * Remove one more case of loading the entire dbrx-instruct in the tests * Update src/transformers/models/dbrx/modeling_dbrx.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * address some comments * small model * add dbrx to tokenization_auto * More docstrings with add_start_docstrings * Dbrx for now * add PipelineTesterMixin * Update src/transformers/models/dbrx/configuration_dbrx.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * remove flash-attn2 import error * fix docstring Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * add useage example * put on one line Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * fix ffn_act_fn Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * change "dbrx" to "DBRX" for display purposes. * fix __init__.py? * fix __init__.py * fix README * return the aux_loss * remove extra spaces * fix configuration_auto.py * fix format in tokenization_auto * remove new line * add more useage examples --------- Co-authored-by: Abhi Venigalla <abhi.venigalla@databricks.com> Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> Co-authored-by: Eitan Turok <eitan.turok@databricks.com> Co-authored-by: Eitan Turok <150733043+eitanturok@users.noreply.github.com> Co-authored-by: Wing Lian <wing.lian@gmail.com> Co-authored-by: Eitan Turok <eitanturok@gmail.com> Co-authored-by: Matt <Rocketknight1@users.noreply.github.com> Co-authored-by: Matt <rocketknight1@gmail.com> Co-authored-by: Your Name <you@example.com> Co-authored-by: Mihir Patel <mihir.v.patel7@gmail.com> Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
This commit is contained in:
parent
63c5e27efb
commit
005b957fb8
@ -341,6 +341,7 @@ Current number of checkpoints: ** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
|
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
|
||||||
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
|
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
|
||||||
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
|
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
|
||||||
|
1. **[DBRX](https://huggingface.co/docs/transformers/main/model_doc/dbrx)** (from Databricks) released with the paper [Introducing DBRX: A New State-of-the-Art Open LLM](https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm) by the Mosaic Research Team.
|
||||||
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||||
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||||
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
|
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
|
||||||
|
@ -337,6 +337,7 @@ Aktuelle Anzahl der Checkpoints: ** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
|
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
|
||||||
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
|
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
|
||||||
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
|
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
|
||||||
|
1. **[DBRX](https://huggingface.co/docs/transformers/main/model_doc/dbrx)** (from Databricks) released with the paper [Introducing DBRX: A New State-of-the-Art Open LLM](https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm) by the Mosaic Research Team.
|
||||||
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||||
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||||
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
|
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
|
||||||
|
@ -314,6 +314,7 @@ Número actual de puntos de control: ** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
|
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
|
||||||
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
|
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
|
||||||
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
|
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
|
||||||
|
1. **[DBRX](https://huggingface.co/docs/transformers/main/model_doc/dbrx)** (from Databricks) released with the paper [Introducing DBRX: A New State-of-the-Art Open LLM](https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm) by the Mosaic Research Team.
|
||||||
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||||
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||||
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
|
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
|
||||||
@ -477,7 +478,7 @@ Número actual de puntos de control: ** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
|
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
|
||||||
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
|
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
|
||||||
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
|
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
|
||||||
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with a coming soon paper.
|
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with the paper [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
|
||||||
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (from MagicLeap) released with the paper [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
|
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (from MagicLeap) released with the paper [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
|
||||||
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
|
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
|
||||||
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
|
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
|
||||||
|
@ -335,6 +335,7 @@ Nombre actuel de points de contrôle : ** (de Salesforce) publié dans l'article [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) par Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong et Richard Socher.
|
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (de Salesforce) publié dans l'article [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) par Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong et Richard Socher.
|
||||||
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (de Microsoft) publié dans l'article [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) par Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
|
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (de Microsoft) publié dans l'article [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) par Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
|
||||||
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (de Facebook) publié dans l'article [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) par Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
|
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (de Facebook) publié dans l'article [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) par Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
|
||||||
|
1. **[DBRX](https://huggingface.co/docs/transformers/main/model_doc/dbrx)** (from Databricks) released with the paper [Introducing DBRX: A New State-of-the-Art Open LLM](https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm) by the Mosaic Research Team.
|
||||||
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (de Microsoft) publié dans l'article [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) par Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (de Microsoft) publié dans l'article [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) par Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||||
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (de Microsoft) publié dans l'article [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) par Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (de Microsoft) publié dans l'article [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) par Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||||
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (de Berkeley/Facebook/Google) publié dans l'article [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) par Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
|
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (de Berkeley/Facebook/Google) publié dans l'article [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) par Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
|
||||||
|
@ -288,6 +288,7 @@ conda install conda-forge::transformers
|
|||||||
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (सेल्सफोर्स से) साथ में पेपर [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) नीतीश शिरीष केसकर*, ब्रायन मैककैन*, लव आर. वार्ष्णेय, कैमिंग जिओंग और रिचर्ड द्वारा सोचर द्वारा जारी किया गया।
|
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (सेल्सफोर्स से) साथ में पेपर [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) नीतीश शिरीष केसकर*, ब्रायन मैककैन*, लव आर. वार्ष्णेय, कैमिंग जिओंग और रिचर्ड द्वारा सोचर द्वारा जारी किया गया।
|
||||||
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (Microsoft से) साथ में दिया गया पेपर [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) हैपिंग वू, बिन जिओ, नोएल कोडेला, मेंगचेन लियू, जियांग दाई, लू युआन, लेई झांग द्वारा।
|
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (Microsoft से) साथ में दिया गया पेपर [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) हैपिंग वू, बिन जिओ, नोएल कोडेला, मेंगचेन लियू, जियांग दाई, लू युआन, लेई झांग द्वारा।
|
||||||
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (फेसबुक से) साथ में कागज [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) एलेक्सी बाएव्स्की, वेई-निंग सू, कियानटोंग जू, अरुण बाबू, जियाताओ गु, माइकल औली द्वारा पोस्ट किया गया।
|
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (फेसबुक से) साथ में कागज [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) एलेक्सी बाएव्स्की, वेई-निंग सू, कियानटोंग जू, अरुण बाबू, जियाताओ गु, माइकल औली द्वारा पोस्ट किया गया।
|
||||||
|
1. **[DBRX](https://huggingface.co/docs/transformers/main/model_doc/dbrx)** (from Databricks) released with the paper [Introducing DBRX: A New State-of-the-Art Open LLM](https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm) by the Mosaic Research Team.
|
||||||
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (Microsoft से) साथ में दिया गया पेपर [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) पेंगचेंग हे, ज़ियाओडोंग लियू, जियानफेंग गाओ, वीज़ू चेन द्वारा।
|
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (Microsoft से) साथ में दिया गया पेपर [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) पेंगचेंग हे, ज़ियाओडोंग लियू, जियानफेंग गाओ, वीज़ू चेन द्वारा।
|
||||||
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (Microsoft से) साथ में दिया गया पेपर [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) पेंगचेंग हे, ज़ियाओडोंग लियू, जियानफेंग गाओ, वीज़ू चेन द्वारा पोस्ट किया गया।
|
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (Microsoft से) साथ में दिया गया पेपर [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) पेंगचेंग हे, ज़ियाओडोंग लियू, जियानफेंग गाओ, वीज़ू चेन द्वारा पोस्ट किया गया।
|
||||||
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (बर्कले/फेसबुक/गूगल से) पेपर के साथ [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) लिली चेन, केविन लू, अरविंद राजेश्वरन, किमिन ली, आदित्य ग्रोवर, माइकल लास्किन, पीटर एबील, अरविंद श्रीनिवास, इगोर मोर्डच द्वारा पोस्ट किया गया।
|
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (बर्कले/फेसबुक/गूगल से) पेपर के साथ [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) लिली चेन, केविन लू, अरविंद राजेश्वरन, किमिन ली, आदित्य ग्रोवर, माइकल लास्किन, पीटर एबील, अरविंद श्रीनिवास, इगोर मोर्डच द्वारा पोस्ट किया गया।
|
||||||
@ -421,7 +422,7 @@ conda install conda-forge::transformers
|
|||||||
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
|
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
|
||||||
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (माइक्रोसॉफ्ट रिसर्च से) साथ में पेपर [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) यू यान, वीज़ेन क्यूई, येयुन गोंग, दयाहेंग लियू, नान डुआन, जिउशेंग चेन, रुओफ़ेई झांग और मिंग झोउ द्वारा पोस्ट किया गया।
|
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (माइक्रोसॉफ्ट रिसर्च से) साथ में पेपर [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) यू यान, वीज़ेन क्यूई, येयुन गोंग, दयाहेंग लियू, नान डुआन, जिउशेंग चेन, रुओफ़ेई झांग और मिंग झोउ द्वारा पोस्ट किया गया।
|
||||||
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (Nanjing University, The University of Hong Kong etc. से) Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao. द्वाराअनुसंधान पत्र [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) के साथ जारी किया गया
|
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (Nanjing University, The University of Hong Kong etc. से) Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao. द्वाराअनुसंधान पत्र [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) के साथ जारी किया गया
|
||||||
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc. से) Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao. द्वाराअनुसंधान पत्र [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797) के साथ जारी किया गया
|
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc. से) Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao. द्वाराअनुसंधान पत्र [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797) के साथ जारी किया गया
|
||||||
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (NVIDIA से) साथ वाला पेपर [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) हाओ वू, पैट्रिक जुड, जिआओजी झांग, मिखाइल इसेव और पॉलियस माइकेविसियस द्वारा।
|
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (NVIDIA से) साथ वाला पेपर [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) हाओ वू, पैट्रिक जुड, जिआओजी झांग, मिखाइल इसेव और पॉलियस माइकेविसियस द्वारा।
|
||||||
1. **[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (the Qwen team, Alibaba Group से) Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou and Tianhang Zhu. द्वाराअनुसंधान पत्र [Qwen Technical Report](https://arxiv.org/abs/2309.16609) के साथ जारी किया गया
|
1. **[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (the Qwen team, Alibaba Group से) Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou and Tianhang Zhu. द्वाराअनुसंधान पत्र [Qwen Technical Report](https://arxiv.org/abs/2309.16609) के साथ जारी किया गया
|
||||||
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (the Qwen team, Alibaba Group से) Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou. द्वाराअनुसंधान पत्र [blog post](https://qwenlm.github.io/blog/qwen-moe/) के साथ जारी किया गया
|
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (the Qwen team, Alibaba Group से) Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou. द्वाराअनुसंधान पत्र [blog post](https://qwenlm.github.io/blog/qwen-moe/) के साथ जारी किया गया
|
||||||
@ -450,7 +451,7 @@ conda install conda-forge::transformers
|
|||||||
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (फेसबुक से) साथ में पेपर [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) चांगहान वांग, ऐनी वू, जुआन पिनो, एलेक्सी बेवस्की, माइकल औली, एलेक्सिस द्वारा Conneau द्वारा पोस्ट किया गया।
|
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (फेसबुक से) साथ में पेपर [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) चांगहान वांग, ऐनी वू, जुआन पिनो, एलेक्सी बेवस्की, माइकल औली, एलेक्सिस द्वारा Conneau द्वारा पोस्ट किया गया।
|
||||||
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (तेल अवीव यूनिवर्सिटी से) साथ में पेपर [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) ओरि राम, युवल कर्स्टन, जोनाथन बेरेंट, अमीर ग्लोबर्सन, ओमर लेवी द्वारा।
|
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (तेल अवीव यूनिवर्सिटी से) साथ में पेपर [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) ओरि राम, युवल कर्स्टन, जोनाथन बेरेंट, अमीर ग्लोबर्सन, ओमर लेवी द्वारा।
|
||||||
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (बर्कले से) कागज के साथ [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) फॉरेस्ट एन. इनडोला, अल्बर्ट ई. शॉ, रवि कृष्णा, और कर्ट डब्ल्यू. केटज़र द्वारा।
|
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (बर्कले से) कागज के साथ [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) फॉरेस्ट एन. इनडोला, अल्बर्ट ई. शॉ, रवि कृष्णा, और कर्ट डब्ल्यू. केटज़र द्वारा।
|
||||||
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
|
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
|
||||||
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with the paper [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
|
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with the paper [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
|
||||||
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (from MagicLeap) released with the paper [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
|
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (from MagicLeap) released with the paper [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
|
||||||
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (MBZUAI से) Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan. द्वाराअनुसंधान पत्र [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) के साथ जारी किया गया
|
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (MBZUAI से) Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan. द्वाराअनुसंधान पत्र [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) के साथ जारी किया गया
|
||||||
|
@ -348,6 +348,7 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
|
|||||||
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (Salesforce から) Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher から公開された研究論文: [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858)
|
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (Salesforce から) Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher から公開された研究論文: [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858)
|
||||||
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (Microsoft から) Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang から公開された研究論文: [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808)
|
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (Microsoft から) Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang から公開された研究論文: [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808)
|
||||||
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (Facebook から) Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli から公開された研究論文: [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555)
|
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (Facebook から) Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli から公開された研究論文: [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555)
|
||||||
|
1. **[DBRX](https://huggingface.co/docs/transformers/main/model_doc/dbrx)** (from Databricks) released with the paper [Introducing DBRX: A New State-of-the-Art Open LLM](https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm) by the Mosaic Research Team.
|
||||||
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (Microsoft から) Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen から公開された研究論文: [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654)
|
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (Microsoft から) Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen から公開された研究論文: [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654)
|
||||||
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (Microsoft から) Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen から公開された研究論文: [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654)
|
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (Microsoft から) Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen から公開された研究論文: [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654)
|
||||||
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (Berkeley/Facebook/Google から) Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch から公開された研究論文: [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345)
|
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (Berkeley/Facebook/Google から) Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch から公開された研究論文: [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345)
|
||||||
@ -481,7 +482,7 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
|
|||||||
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
|
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
|
||||||
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (Microsoft Research から) Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou から公開された研究論文: [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063)
|
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (Microsoft Research から) Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou から公開された研究論文: [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063)
|
||||||
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (Nanjing University, The University of Hong Kong etc. から) Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao. から公開された研究論文 [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf)
|
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (Nanjing University, The University of Hong Kong etc. から) Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao. から公開された研究論文 [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf)
|
||||||
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc. から) Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao. から公開された研究論文 [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797)
|
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc. から) Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao. から公開された研究論文 [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797)
|
||||||
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (NVIDIA から) Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius から公開された研究論文: [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602)
|
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (NVIDIA から) Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius から公開された研究論文: [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602)
|
||||||
1. **[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (the Qwen team, Alibaba Group から) Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou and Tianhang Zhu. から公開された研究論文 [Qwen Technical Report](https://arxiv.org/abs/2309.16609)
|
1. **[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (the Qwen team, Alibaba Group から) Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou and Tianhang Zhu. から公開された研究論文 [Qwen Technical Report](https://arxiv.org/abs/2309.16609)
|
||||||
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (the Qwen team, Alibaba Group から) Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou. から公開された研究論文 [blog post](https://qwenlm.github.io/blog/qwen-moe/)
|
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (the Qwen team, Alibaba Group から) Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou. から公開された研究論文 [blog post](https://qwenlm.github.io/blog/qwen-moe/)
|
||||||
@ -510,7 +511,7 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
|
|||||||
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (Facebook から), Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau から公開された研究論文: [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678)
|
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (Facebook から), Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau から公開された研究論文: [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678)
|
||||||
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (Tel Aviv University から), Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy から公開された研究論文: [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438)
|
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (Tel Aviv University から), Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy から公開された研究論文: [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438)
|
||||||
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (Berkeley から) Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer から公開された研究論文: [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316)
|
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (Berkeley から) Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer から公開された研究論文: [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316)
|
||||||
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
|
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
|
||||||
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with the paper [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
|
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with the paper [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
|
||||||
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (from MagicLeap) released with the paper [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
|
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (from MagicLeap) released with the paper [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
|
||||||
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (MBZUAI から) Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan. から公開された研究論文 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446)
|
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (MBZUAI から) Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan. から公開された研究論文 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446)
|
||||||
|
@ -263,6 +263,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
|
|||||||
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (Salesforce 에서) Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher 의 [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) 논문과 함께 발표했습니다.
|
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (Salesforce 에서) Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher 의 [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) 논문과 함께 발표했습니다.
|
||||||
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (Microsoft 에서) Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang 의 [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) 논문과 함께 발표했습니다.
|
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (Microsoft 에서) Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang 의 [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) 논문과 함께 발표했습니다.
|
||||||
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (Facebook 에서) Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli 의 [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) 논문과 함께 발표했습니다.
|
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (Facebook 에서) Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli 의 [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) 논문과 함께 발표했습니다.
|
||||||
|
1. **[DBRX](https://huggingface.co/docs/transformers/main/model_doc/dbrx)** (from Databricks) released with the paper [Introducing DBRX: A New State-of-the-Art Open LLM](https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm) by the Mosaic Research Team.
|
||||||
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (Microsoft 에서) Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 의 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 논문과 함께 발표했습니다.
|
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (Microsoft 에서) Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 의 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 논문과 함께 발표했습니다.
|
||||||
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (Microsoft 에서) Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 의 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 논문과 함께 발표했습니다.
|
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (Microsoft 에서) Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 의 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 논문과 함께 발표했습니다.
|
||||||
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (Berkeley/Facebook/Google 에서) Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch 의 [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) 논문과 함께 발표했습니다.
|
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (Berkeley/Facebook/Google 에서) Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch 의 [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) 논문과 함께 발표했습니다.
|
||||||
@ -396,7 +397,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
|
|||||||
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
|
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
|
||||||
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (Microsoft Research 에서) Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 의 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 논문과 함께 발표했습니다.
|
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (Microsoft Research 에서) Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 의 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 논문과 함께 발표했습니다.
|
||||||
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (Nanjing University, The University of Hong Kong etc. 에서 제공)은 Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.의 [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf)논문과 함께 발표했습니다.
|
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (Nanjing University, The University of Hong Kong etc. 에서 제공)은 Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.의 [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf)논문과 함께 발표했습니다.
|
||||||
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc. 에서 제공)은 Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.의 [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797)논문과 함께 발표했습니다.
|
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc. 에서 제공)은 Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.의 [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797)논문과 함께 발표했습니다.
|
||||||
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (NVIDIA 에서) Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius 의 [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) 논문과 함께 발표했습니다.
|
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (NVIDIA 에서) Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius 의 [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) 논문과 함께 발표했습니다.
|
||||||
1. **[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (the Qwen team, Alibaba Group 에서 제공)은 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou and Tianhang Zhu.의 [Qwen Technical Report](https://arxiv.org/abs/2309.16609)논문과 함께 발표했습니다.
|
1. **[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (the Qwen team, Alibaba Group 에서 제공)은 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou and Tianhang Zhu.의 [Qwen Technical Report](https://arxiv.org/abs/2309.16609)논문과 함께 발표했습니다.
|
||||||
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (the Qwen team, Alibaba Group 에서 제공)은 Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou.의 [blog post](https://qwenlm.github.io/blog/qwen-moe/)논문과 함께 발표했습니다.
|
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (the Qwen team, Alibaba Group 에서 제공)은 Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou.의 [blog post](https://qwenlm.github.io/blog/qwen-moe/)논문과 함께 발표했습니다.
|
||||||
@ -425,7 +426,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
|
|||||||
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (Facebook 에서) Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau 의 [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) 논문과 함께 발표했습니다.
|
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (Facebook 에서) Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau 의 [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) 논문과 함께 발표했습니다.
|
||||||
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (Tel Aviv University 에서) Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy 의 [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) 논문과 함께 발표했습니다.
|
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (Tel Aviv University 에서) Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy 의 [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) 논문과 함께 발표했습니다.
|
||||||
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (Berkeley 에서) Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer 의 [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) 논문과 함께 발표했습니다.
|
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (Berkeley 에서) Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer 의 [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) 논문과 함께 발표했습니다.
|
||||||
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
|
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
|
||||||
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with the paper [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
|
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with the paper [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
|
||||||
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (from MagicLeap) released with the paper [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
|
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (from MagicLeap) released with the paper [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
|
||||||
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (MBZUAI 에서 제공)은 Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.의 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446)논문과 함께 발표했습니다.
|
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (MBZUAI 에서 제공)은 Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.의 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446)논문과 함께 발표했습니다.
|
||||||
|
@ -346,6 +346,7 @@ Número atual de pontos de verificação: ** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
|
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
|
||||||
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
|
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
|
||||||
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
|
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
|
||||||
|
1. **[DBRX](https://huggingface.co/docs/transformers/main/model_doc/dbrx)** (from Databricks) released with the paper [Introducing DBRX: A New State-of-the-Art Open LLM](https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm) by the Mosaic Research Team.
|
||||||
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||||
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||||
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
|
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
|
||||||
|
@ -336,6 +336,7 @@ conda install conda-forge::transformers
|
|||||||
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
|
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
|
||||||
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
|
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
|
||||||
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
|
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
|
||||||
|
1. **[DBRX](https://huggingface.co/docs/transformers/main/model_doc/dbrx)** (from Databricks) released with the paper [Introducing DBRX: A New State-of-the-Art Open LLM](https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm) by the Mosaic Research Team.
|
||||||
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||||
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||||
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
|
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
|
||||||
|
@ -338,6 +338,7 @@ Flax, PyTorch లేదా TensorFlow యొక్క ఇన్స్టా
|
|||||||
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
|
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
|
||||||
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
|
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
|
||||||
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
|
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
|
||||||
|
1. **[DBRX](https://huggingface.co/docs/transformers/main/model_doc/dbrx)** (from Databricks) released with the paper [Introducing DBRX: A New State-of-the-Art Open LLM](https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm) by the Mosaic Research Team.
|
||||||
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||||
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||||
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
|
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
|
||||||
|
@ -337,6 +337,7 @@ Số lượng điểm kiểm tra hiện tại: ** (từ Salesforce) được phát hành với bài báo [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
|
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (từ Salesforce) được phát hành với bài báo [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
|
||||||
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (từ Microsoft) được phát hành với bài báo [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
|
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (từ Microsoft) được phát hành với bài báo [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
|
||||||
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (từ Facebook) được phát hành với bài báo [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
|
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (từ Facebook) được phát hành với bài báo [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
|
||||||
|
1. **[DBRX](https://huggingface.co/docs/transformers/main/model_doc/dbrx)** (from Databricks) released with the paper [Introducing DBRX: A New State-of-the-Art Open LLM](https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm) by the Mosaic Research Team.
|
||||||
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (từ Microsoft) được phát hành với bài báo [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (từ Microsoft) được phát hành với bài báo [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||||
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (từ Microsoft) được phát hành với bài báo [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (từ Microsoft) được phát hành với bài báo [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||||
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (từ Berkeley/Facebook/Google) được phát hành với bài báo [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
|
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (từ Berkeley/Facebook/Google) được phát hành với bài báo [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
|
||||||
|
@ -277,7 +277,7 @@ conda install conda-forge::transformers
|
|||||||
1. **[CLVP](https://huggingface.co/docs/transformers/model_doc/clvp)** released with the paper [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) by James Betker.
|
1. **[CLVP](https://huggingface.co/docs/transformers/model_doc/clvp)** released with the paper [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) by James Betker.
|
||||||
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (来自 Salesforce) 伴随论文 [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) 由 Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong 发布。
|
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (来自 Salesforce) 伴随论文 [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) 由 Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong 发布。
|
||||||
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (来自 MetaAI) 伴随论文 [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) 由 Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve 发布。
|
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (来自 MetaAI) 伴随论文 [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) 由 Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve 发布。
|
||||||
1. **[Cohere](https://huggingface.co/docs/transformers/model_doc/cohere)** (来自 Cohere) 伴随论文 [Command-R: Retrieval Augmented Generation at Production Scale](<https://txt.cohere.com/command-r/>) 由 Cohere 发布。
|
1. **[Cohere](https://huggingface.co/docs/transformers/model_doc/cohere)** (来自 Cohere) 伴随论文 [Command-R: Retrieval Augmented Generation at Production Scale](<https://txt.cohere.com/command-r/>) 由 Cohere 发布。
|
||||||
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (来自 Microsoft Research Asia) 伴随论文 [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) 由 Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang 发布。
|
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (来自 Microsoft Research Asia) 伴随论文 [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) 由 Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang 发布。
|
||||||
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (来自 YituTech) 伴随论文 [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) 由 Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan 发布。
|
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (来自 YituTech) 伴随论文 [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) 由 Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan 发布。
|
||||||
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (来自 Facebook AI) 伴随论文 [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) 由 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie 发布。
|
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (来自 Facebook AI) 伴随论文 [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) 由 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie 发布。
|
||||||
@ -287,6 +287,7 @@ conda install conda-forge::transformers
|
|||||||
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (来自 Salesforce) 伴随论文 [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) 由 Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher 发布。
|
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (来自 Salesforce) 伴随论文 [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) 由 Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher 发布。
|
||||||
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (来自 Microsoft) 伴随论文 [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) 由 Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang 发布。
|
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (来自 Microsoft) 伴随论文 [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) 由 Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang 发布。
|
||||||
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (来自 Facebook) 伴随论文 [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) 由 Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli 发布。
|
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (来自 Facebook) 伴随论文 [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) 由 Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli 发布。
|
||||||
|
1. **[DBRX](https://huggingface.co/docs/transformers/main/model_doc/dbrx)** (from Databricks) released with the paper [Introducing DBRX: A New State-of-the-Art Open LLM](https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm) by the Mosaic Research Team.
|
||||||
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (来自 Microsoft) 伴随论文 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 由 Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 发布。
|
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (来自 Microsoft) 伴随论文 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 由 Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 发布。
|
||||||
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (来自 Microsoft) 伴随论文 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 由 Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 发布。
|
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (来自 Microsoft) 伴随论文 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 由 Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 发布。
|
||||||
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (来自 Berkeley/Facebook/Google) 伴随论文 [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) 由 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch 发布。
|
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (来自 Berkeley/Facebook/Google) 伴随论文 [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) 由 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch 发布。
|
||||||
@ -420,7 +421,7 @@ conda install conda-forge::transformers
|
|||||||
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
|
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
|
||||||
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (来自 Microsoft Research) 伴随论文 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 由 Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 发布。
|
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (来自 Microsoft Research) 伴随论文 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 由 Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 发布。
|
||||||
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (来自 Nanjing University, The University of Hong Kong etc.) 伴随论文 [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) 由 Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao 发布。
|
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (来自 Nanjing University, The University of Hong Kong etc.) 伴随论文 [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) 由 Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao 发布。
|
||||||
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (来自 Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc.) 伴随论文 [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797) 由 Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao 发布。
|
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (来自 Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc.) 伴随论文 [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797) 由 Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao 发布。
|
||||||
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (来自 NVIDIA) 伴随论文 [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) 由 Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius 发布。
|
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (来自 NVIDIA) 伴随论文 [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) 由 Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius 发布。
|
||||||
1. **[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (来自 the Qwen team, Alibaba Group) 伴随论文 [Qwen Technical Report](https://arxiv.org/abs/2309.16609) 由 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou and Tianhang Zhu 发布。
|
1. **[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (来自 the Qwen team, Alibaba Group) 伴随论文 [Qwen Technical Report](https://arxiv.org/abs/2309.16609) 由 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou and Tianhang Zhu 发布。
|
||||||
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (来自 the Qwen team, Alibaba Group) 伴随论文 [blog post](https://qwenlm.github.io/blog/qwen-moe/) by Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou 发布.
|
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (来自 the Qwen team, Alibaba Group) 伴随论文 [blog post](https://qwenlm.github.io/blog/qwen-moe/) by Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou 发布.
|
||||||
@ -449,9 +450,9 @@ conda install conda-forge::transformers
|
|||||||
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (来自 Facebook) 伴随论文 [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) 由 Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau 发布。
|
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (来自 Facebook) 伴随论文 [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) 由 Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau 发布。
|
||||||
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (来自 Tel Aviv University) 伴随论文 [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) 由 Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy 发布。
|
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (来自 Tel Aviv University) 伴随论文 [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) 由 Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy 发布。
|
||||||
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (来自 Berkeley) 伴随论文 [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) 由 Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer 发布。
|
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (来自 Berkeley) 伴随论文 [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) 由 Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer 发布。
|
||||||
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
|
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
|
||||||
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with the paper [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
|
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with the paper [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
|
||||||
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (from MagicLeap) released with the paper [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
|
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (from MagicLeap) released with the paper [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
|
||||||
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (来自 MBZUAI) 伴随论文 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) 由 Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan 发布。
|
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (来自 MBZUAI) 伴随论文 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) 由 Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan 发布。
|
||||||
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (来自 Microsoft) 伴随论文 [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) 由 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo 发布。
|
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (来自 Microsoft) 伴随论文 [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) 由 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo 发布。
|
||||||
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (来自 Microsoft) 伴随论文 [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) 由 Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo 发布。
|
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (来自 Microsoft) 伴随论文 [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) 由 Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo 发布。
|
||||||
|
@ -299,6 +299,7 @@ conda install conda-forge::transformers
|
|||||||
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
|
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
|
||||||
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
|
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
|
||||||
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
|
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
|
||||||
|
1. **[DBRX](https://huggingface.co/docs/transformers/main/model_doc/dbrx)** (from Databricks) released with the paper [Introducing DBRX: A New State-of-the-Art Open LLM](https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm) by the Mosaic Research Team.
|
||||||
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||||
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||||
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
|
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
|
||||||
|
@ -320,6 +320,8 @@
|
|||||||
title: CPMANT
|
title: CPMANT
|
||||||
- local: model_doc/ctrl
|
- local: model_doc/ctrl
|
||||||
title: CTRL
|
title: CTRL
|
||||||
|
- local: model_doc/dbrx
|
||||||
|
title: DBRX
|
||||||
- local: model_doc/deberta
|
- local: model_doc/deberta
|
||||||
title: DeBERTa
|
title: DeBERTa
|
||||||
- local: model_doc/deberta-v2
|
- local: model_doc/deberta-v2
|
||||||
|
@ -107,6 +107,7 @@ Flax), PyTorch, and/or TensorFlow.
|
|||||||
| [Data2VecAudio](model_doc/data2vec) | ✅ | ❌ | ❌ |
|
| [Data2VecAudio](model_doc/data2vec) | ✅ | ❌ | ❌ |
|
||||||
| [Data2VecText](model_doc/data2vec) | ✅ | ❌ | ❌ |
|
| [Data2VecText](model_doc/data2vec) | ✅ | ❌ | ❌ |
|
||||||
| [Data2VecVision](model_doc/data2vec) | ✅ | ✅ | ❌ |
|
| [Data2VecVision](model_doc/data2vec) | ✅ | ✅ | ❌ |
|
||||||
|
| [DBRX](model_doc/dbrx) | ✅ | ❌ | ❌ |
|
||||||
| [DeBERTa](model_doc/deberta) | ✅ | ✅ | ❌ |
|
| [DeBERTa](model_doc/deberta) | ✅ | ✅ | ❌ |
|
||||||
| [DeBERTa-v2](model_doc/deberta-v2) | ✅ | ✅ | ❌ |
|
| [DeBERTa-v2](model_doc/deberta-v2) | ✅ | ✅ | ❌ |
|
||||||
| [Decision Transformer](model_doc/decision_transformer) | ✅ | ❌ | ❌ |
|
| [Decision Transformer](model_doc/decision_transformer) | ✅ | ❌ | ❌ |
|
||||||
|
120
docs/source/en/model_doc/dbrx.md
Normal file
120
docs/source/en/model_doc/dbrx.md
Normal file
@ -0,0 +1,120 @@
|
|||||||
|
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
|
the License. You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||||
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||||
|
specific language governing permissions and limitations under the License.
|
||||||
|
-->
|
||||||
|
|
||||||
|
# DBRX
|
||||||
|
|
||||||
|
## Overview
|
||||||
|
|
||||||
|
DBRX is a [transformer-based](https://www.isattentionallyouneed.com/) decoder-only large language model (LLM) that was trained using next-token prediction.
|
||||||
|
It uses a *fine-grained* mixture-of-experts (MoE) architecture with 132B total parameters of which 36B parameters are active on any input.
|
||||||
|
It was pre-trained on 12T tokens of text and code data.
|
||||||
|
Compared to other open MoE models like Mixtral-8x7B and Grok-1, DBRX is fine-grained, meaning it uses a larger number of smaller experts. DBRX has 16 experts and chooses 4, while Mixtral-8x7B and Grok-1 have 8 experts and choose 2.
|
||||||
|
This provides 65x more possible combinations of experts and we found that this improves model quality.
|
||||||
|
DBRX uses rotary position encodings (RoPE), gated linear units (GLU), and grouped query attention (GQA).
|
||||||
|
It is a BPE based model and uses the GPT-4 tokenizer as described in the [tiktoken](https://github.com/openai/tiktoken) repository.
|
||||||
|
We made these choices based on exhaustive evaluation and scaling experiments.
|
||||||
|
|
||||||
|
DBRX was pretrained on 12T tokens of carefully curated data and a maximum context length of 32K tokens.
|
||||||
|
We estimate that this data is at least 2x better token-for-token than the data we used to pretrain the MPT family of models.
|
||||||
|
This new dataset was developed using the full suite of Databricks tools, including Apache Spark™ and Databricks notebooks for data processing, and Unity Catalog for data management and governance.
|
||||||
|
We used curriculum learning for pretraining, changing the data mix during training in ways we found to substantially improve model quality.
|
||||||
|
|
||||||
|
|
||||||
|
More detailed information about DBRX Instruct and DBRX Base can be found in our [technical blog post](https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm).
|
||||||
|
|
||||||
|
|
||||||
|
This model was contributed by [eitan-turok](https://huggingface.co/eitanturok) and [abhi-db](https://huggingface.co/abhi-db). The original code can be found [here](https://github.com/databricks/dbrx-instruct).
|
||||||
|
|
||||||
|
## Usage Examples
|
||||||
|
|
||||||
|
The `generate()` method can be used to generate text using DBRX. You can generate using the standard attention implementation, flash-attention, and the PyTorch scaled dot product attention. The last two attention implementations give speed ups.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from transformers import DbrxForCausalLM, AutoTokenizer
|
||||||
|
import torch
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained("databricks/dbrx-instruct", token="YOUR_HF_TOKEN")
|
||||||
|
model = DbrxForCausalLM.from_pretrained(
|
||||||
|
"databricks/dbrx-instruct",
|
||||||
|
device_map="auto",
|
||||||
|
torch_dtype=torch.bfloat16,
|
||||||
|
token="YOUR_HF_TOKEN",
|
||||||
|
)
|
||||||
|
|
||||||
|
input_text = "What does it take to build a great LLM?"
|
||||||
|
messages = [{"role": "user", "content": input_text}]
|
||||||
|
input_ids = tokenizer.apply_chat_template(messages, return_dict=True, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
|
||||||
|
|
||||||
|
outputs = model.generate(**input_ids, max_new_tokens=200)
|
||||||
|
print(tokenizer.decode(outputs[0]))
|
||||||
|
```
|
||||||
|
|
||||||
|
If you have flash-attention installed (`pip install flash-attn`), it is possible to generate faster. (The HuggingFace documentation for flash-attention can be found [here](https://huggingface.co/docs/transformers/perf_infer_gpu_one#flashattention-2).)
|
||||||
|
```python
|
||||||
|
from transformers import DbrxForCausalLM, AutoTokenizer
|
||||||
|
import torch
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained("databricks/dbrx-instruct", token="YOUR_HF_TOKEN")
|
||||||
|
model = DbrxForCausalLM.from_pretrained(
|
||||||
|
"databricks/dbrx-instruct",
|
||||||
|
device_map="auto",
|
||||||
|
torch_dtype=torch.bfloat16,
|
||||||
|
token="YOUR_HF_TOKEN",
|
||||||
|
attn_implementation="flash_attention_2",
|
||||||
|
)
|
||||||
|
|
||||||
|
input_text = "What does it take to build a great LLM?"
|
||||||
|
messages = [{"role": "user", "content": input_text}]
|
||||||
|
input_ids = tokenizer.apply_chat_template(messages, return_dict=True, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
|
||||||
|
|
||||||
|
outputs = model.generate(**input_ids, max_new_tokens=200)
|
||||||
|
print(tokenizer.decode(outputs[0]))
|
||||||
|
```
|
||||||
|
|
||||||
|
You can also generate faster using the PyTorch scaled dot product attention. (The HuggingFace documentation for scaled dot product attention can be found [here](https://huggingface.co/docs/transformers/perf_infer_gpu_one#pytorch-scaled-dot-product-attention).)
|
||||||
|
```python
|
||||||
|
from transformers import DbrxForCausalLM, AutoTokenizer
|
||||||
|
import torch
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained("databricks/dbrx-instruct", token="YOUR_HF_TOKEN")
|
||||||
|
model = DbrxForCausalLM.from_pretrained(
|
||||||
|
"databricks/dbrx-instruct",
|
||||||
|
device_map="auto",
|
||||||
|
torch_dtype=torch.bfloat16,
|
||||||
|
token="YOUR_HF_TOKEN",
|
||||||
|
attn_implementation="sdpa",
|
||||||
|
)
|
||||||
|
|
||||||
|
input_text = "What does it take to build a great LLM?"
|
||||||
|
messages = [{"role": "user", "content": input_text}]
|
||||||
|
input_ids = tokenizer.apply_chat_template(messages, return_dict=True, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
|
||||||
|
|
||||||
|
outputs = model.generate(**input_ids, max_new_tokens=200)
|
||||||
|
print(tokenizer.decode(outputs[0]))
|
||||||
|
```
|
||||||
|
|
||||||
|
## DbrxConfig
|
||||||
|
|
||||||
|
[[autodoc]] DbrxConfig
|
||||||
|
|
||||||
|
|
||||||
|
## DbrxModel
|
||||||
|
|
||||||
|
[[autodoc]] DbrxModel
|
||||||
|
- forward
|
||||||
|
|
||||||
|
|
||||||
|
## DbrxForCausalLM
|
||||||
|
|
||||||
|
[[autodoc]] DbrxForCausalLM
|
||||||
|
- forward
|
||||||
|
|
@ -40,6 +40,7 @@ FlashAttention-2 is currently supported for the following architectures:
|
|||||||
* [Bark](https://huggingface.co/docs/transformers/model_doc/bark#transformers.BarkModel)
|
* [Bark](https://huggingface.co/docs/transformers/model_doc/bark#transformers.BarkModel)
|
||||||
* [Bart](https://huggingface.co/docs/transformers/model_doc/bart#transformers.BartModel)
|
* [Bart](https://huggingface.co/docs/transformers/model_doc/bart#transformers.BartModel)
|
||||||
* [Cohere](https://huggingface.co/docs/transformers/model_doc/cohere#transformers.CohereModel)
|
* [Cohere](https://huggingface.co/docs/transformers/model_doc/cohere#transformers.CohereModel)
|
||||||
|
* [Dbrx](https://huggingface.co/docs/transformers/model_doc/dbrx#transformers.DbrxModel)
|
||||||
* [DistilBert](https://huggingface.co/docs/transformers/model_doc/distilbert#transformers.DistilBertModel)
|
* [DistilBert](https://huggingface.co/docs/transformers/model_doc/distilbert#transformers.DistilBertModel)
|
||||||
* [Gemma](https://huggingface.co/docs/transformers/model_doc/gemma#transformers.GemmaModel)
|
* [Gemma](https://huggingface.co/docs/transformers/model_doc/gemma#transformers.GemmaModel)
|
||||||
* [GPT2](https://huggingface.co/docs/transformers/model_doc/gpt2)
|
* [GPT2](https://huggingface.co/docs/transformers/model_doc/gpt2)
|
||||||
@ -184,9 +185,10 @@ PyTorch's [`torch.nn.functional.scaled_dot_product_attention`](https://pytorch.o
|
|||||||
For now, Transformers supports SDPA inference and training for the following architectures:
|
For now, Transformers supports SDPA inference and training for the following architectures:
|
||||||
* [Bart](https://huggingface.co/docs/transformers/model_doc/bart#transformers.BartModel)
|
* [Bart](https://huggingface.co/docs/transformers/model_doc/bart#transformers.BartModel)
|
||||||
* [Cohere](https://huggingface.co/docs/transformers/model_doc/cohere#transformers.CohereModel)
|
* [Cohere](https://huggingface.co/docs/transformers/model_doc/cohere#transformers.CohereModel)
|
||||||
* [GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode#transformers.GPTBigCodeModel)
|
* [Dbrx](https://huggingface.co/docs/transformers/model_doc/dbrx#transformers.DbrxModel)
|
||||||
* [Falcon](https://huggingface.co/docs/transformers/model_doc/falcon#transformers.FalconModel)
|
* [Falcon](https://huggingface.co/docs/transformers/model_doc/falcon#transformers.FalconModel)
|
||||||
* [Gemma](https://huggingface.co/docs/transformers/model_doc/gemma#transformers.GemmaModel)
|
* [Gemma](https://huggingface.co/docs/transformers/model_doc/gemma#transformers.GemmaModel)
|
||||||
|
* [GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode#transformers.GPTBigCodeModel)
|
||||||
* [Jamba](https://huggingface.co/docs/transformers/model_doc/jamba#transformers.JambaModel)
|
* [Jamba](https://huggingface.co/docs/transformers/model_doc/jamba#transformers.JambaModel)
|
||||||
* [Llama](https://huggingface.co/docs/transformers/model_doc/llama#transformers.LlamaModel)
|
* [Llama](https://huggingface.co/docs/transformers/model_doc/llama#transformers.LlamaModel)
|
||||||
* [OLMo](https://huggingface.co/docs/transformers/model_doc/olmo#transformers.OlmoModel)
|
* [OLMo](https://huggingface.co/docs/transformers/model_doc/olmo#transformers.OlmoModel)
|
||||||
|
@ -37,7 +37,7 @@ You can finetune other architectures for causal language modeling following the
|
|||||||
Choose one of the following architectures:
|
Choose one of the following architectures:
|
||||||
|
|
||||||
<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->
|
<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->
|
||||||
[BART](../model_doc/bart), [BERT](../model_doc/bert), [Bert Generation](../model_doc/bert-generation), [BigBird](../model_doc/big_bird), [BigBird-Pegasus](../model_doc/bigbird_pegasus), [BioGpt](../model_doc/biogpt), [Blenderbot](../model_doc/blenderbot), [BlenderbotSmall](../model_doc/blenderbot-small), [BLOOM](../model_doc/bloom), [CamemBERT](../model_doc/camembert), [CodeLlama](../model_doc/code_llama), [CodeGen](../model_doc/codegen), [Cohere](../model_doc/cohere), [CPM-Ant](../model_doc/cpmant), [CTRL](../model_doc/ctrl), [Data2VecText](../model_doc/data2vec-text), [ELECTRA](../model_doc/electra), [ERNIE](../model_doc/ernie), [Falcon](../model_doc/falcon), [Fuyu](../model_doc/fuyu), [Gemma](../model_doc/gemma), [GIT](../model_doc/git), [GPT-Sw3](../model_doc/gpt-sw3), [OpenAI GPT-2](../model_doc/gpt2), [GPTBigCode](../model_doc/gpt_bigcode), [GPT Neo](../model_doc/gpt_neo), [GPT NeoX](../model_doc/gpt_neox), [GPT NeoX Japanese](../model_doc/gpt_neox_japanese), [GPT-J](../model_doc/gptj), [Jamba](../model_doc/jamba), [LLaMA](../model_doc/llama), [Mamba](../model_doc/mamba), [Marian](../model_doc/marian), [mBART](../model_doc/mbart), [MEGA](../model_doc/mega), [Megatron-BERT](../model_doc/megatron-bert), [Mistral](../model_doc/mistral), [Mixtral](../model_doc/mixtral), [MPT](../model_doc/mpt), [MusicGen](../model_doc/musicgen), [MusicGen Melody](../model_doc/musicgen_melody), [MVP](../model_doc/mvp), [OLMo](../model_doc/olmo), [OpenLlama](../model_doc/open-llama), [OpenAI GPT](../model_doc/openai-gpt), [OPT](../model_doc/opt), [Pegasus](../model_doc/pegasus), [Persimmon](../model_doc/persimmon), [Phi](../model_doc/phi), [PLBart](../model_doc/plbart), [ProphetNet](../model_doc/prophetnet), [QDQBert](../model_doc/qdqbert), [Qwen2](../model_doc/qwen2), [Qwen2MoE](../model_doc/qwen2_moe), [RecurrentGemma](../model_doc/recurrent_gemma), [Reformer](../model_doc/reformer), [RemBERT](../model_doc/rembert), [RoBERTa](../model_doc/roberta), [RoBERTa-PreLayerNorm](../model_doc/roberta-prelayernorm), [RoCBert](../model_doc/roc_bert), [RoFormer](../model_doc/roformer), [RWKV](../model_doc/rwkv), [Speech2Text2](../model_doc/speech_to_text_2), [StableLm](../model_doc/stablelm), [Starcoder2](../model_doc/starcoder2), [Transformer-XL](../model_doc/transfo-xl), [TrOCR](../model_doc/trocr), [Whisper](../model_doc/whisper), [XGLM](../model_doc/xglm), [XLM](../model_doc/xlm), [XLM-ProphetNet](../model_doc/xlm-prophetnet), [XLM-RoBERTa](../model_doc/xlm-roberta), [XLM-RoBERTa-XL](../model_doc/xlm-roberta-xl), [XLNet](../model_doc/xlnet), [X-MOD](../model_doc/xmod)
|
[BART](../model_doc/bart), [BERT](../model_doc/bert), [Bert Generation](../model_doc/bert-generation), [BigBird](../model_doc/big_bird), [BigBird-Pegasus](../model_doc/bigbird_pegasus), [BioGpt](../model_doc/biogpt), [Blenderbot](../model_doc/blenderbot), [BlenderbotSmall](../model_doc/blenderbot-small), [BLOOM](../model_doc/bloom), [CamemBERT](../model_doc/camembert), [CodeLlama](../model_doc/code_llama), [CodeGen](../model_doc/codegen), [Cohere](../model_doc/cohere), [CPM-Ant](../model_doc/cpmant), [CTRL](../model_doc/ctrl), [Data2VecText](../model_doc/data2vec-text), [DBRX](../model_doc/dbrx), [ELECTRA](../model_doc/electra), [ERNIE](../model_doc/ernie), [Falcon](../model_doc/falcon), [Fuyu](../model_doc/fuyu), [Gemma](../model_doc/gemma), [GIT](../model_doc/git), [GPT-Sw3](../model_doc/gpt-sw3), [OpenAI GPT-2](../model_doc/gpt2), [GPTBigCode](../model_doc/gpt_bigcode), [GPT Neo](../model_doc/gpt_neo), [GPT NeoX](../model_doc/gpt_neox), [GPT NeoX Japanese](../model_doc/gpt_neox_japanese), [GPT-J](../model_doc/gptj), [Jamba](../model_doc/jamba), [LLaMA](../model_doc/llama), [Mamba](../model_doc/mamba), [Marian](../model_doc/marian), [mBART](../model_doc/mbart), [MEGA](../model_doc/mega), [Megatron-BERT](../model_doc/megatron-bert), [Mistral](../model_doc/mistral), [Mixtral](../model_doc/mixtral), [MPT](../model_doc/mpt), [MusicGen](../model_doc/musicgen), [MusicGen Melody](../model_doc/musicgen_melody), [MVP](../model_doc/mvp), [OLMo](../model_doc/olmo), [OpenLlama](../model_doc/open-llama), [OpenAI GPT](../model_doc/openai-gpt), [OPT](../model_doc/opt), [Pegasus](../model_doc/pegasus), [Persimmon](../model_doc/persimmon), [Phi](../model_doc/phi), [PLBart](../model_doc/plbart), [ProphetNet](../model_doc/prophetnet), [QDQBert](../model_doc/qdqbert), [Qwen2](../model_doc/qwen2), [Qwen2MoE](../model_doc/qwen2_moe), [RecurrentGemma](../model_doc/recurrent_gemma), [Reformer](../model_doc/reformer), [RemBERT](../model_doc/rembert), [RoBERTa](../model_doc/roberta), [RoBERTa-PreLayerNorm](../model_doc/roberta-prelayernorm), [RoCBert](../model_doc/roc_bert), [RoFormer](../model_doc/roformer), [RWKV](../model_doc/rwkv), [Speech2Text2](../model_doc/speech_to_text_2), [StableLm](../model_doc/stablelm), [Starcoder2](../model_doc/starcoder2), [Transformer-XL](../model_doc/transfo-xl), [TrOCR](../model_doc/trocr), [Whisper](../model_doc/whisper), [XGLM](../model_doc/xglm), [XLM](../model_doc/xlm), [XLM-ProphetNet](../model_doc/xlm-prophetnet), [XLM-RoBERTa](../model_doc/xlm-roberta), [XLM-RoBERTa-XL](../model_doc/xlm-roberta-xl), [XLNet](../model_doc/xlnet), [X-MOD](../model_doc/xmod)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -328,6 +328,7 @@ _import_structure = {
|
|||||||
"Data2VecTextConfig",
|
"Data2VecTextConfig",
|
||||||
"Data2VecVisionConfig",
|
"Data2VecVisionConfig",
|
||||||
],
|
],
|
||||||
|
"models.dbrx": ["DbrxConfig"],
|
||||||
"models.deberta": [
|
"models.deberta": [
|
||||||
"DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
"DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
||||||
"DebertaConfig",
|
"DebertaConfig",
|
||||||
@ -1943,6 +1944,13 @@ else:
|
|||||||
"Data2VecVisionPreTrainedModel",
|
"Data2VecVisionPreTrainedModel",
|
||||||
]
|
]
|
||||||
)
|
)
|
||||||
|
_import_structure["models.dbrx"].extend(
|
||||||
|
[
|
||||||
|
"DbrxForCausalLM",
|
||||||
|
"DbrxModel",
|
||||||
|
"DbrxPreTrainedModel",
|
||||||
|
]
|
||||||
|
)
|
||||||
_import_structure["models.deberta"].extend(
|
_import_structure["models.deberta"].extend(
|
||||||
[
|
[
|
||||||
"DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
|
"DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
|
||||||
@ -5268,6 +5276,7 @@ if TYPE_CHECKING:
|
|||||||
Data2VecTextConfig,
|
Data2VecTextConfig,
|
||||||
Data2VecVisionConfig,
|
Data2VecVisionConfig,
|
||||||
)
|
)
|
||||||
|
from .models.dbrx import DbrxConfig
|
||||||
from .models.deberta import (
|
from .models.deberta import (
|
||||||
DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
||||||
DebertaConfig,
|
DebertaConfig,
|
||||||
@ -6782,6 +6791,13 @@ if TYPE_CHECKING:
|
|||||||
Data2VecVisionModel,
|
Data2VecVisionModel,
|
||||||
Data2VecVisionPreTrainedModel,
|
Data2VecVisionPreTrainedModel,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# PyTorch model imports
|
||||||
|
from .models.dbrx import (
|
||||||
|
DbrxForCausalLM,
|
||||||
|
DbrxModel,
|
||||||
|
DbrxPreTrainedModel,
|
||||||
|
)
|
||||||
from .models.deberta import (
|
from .models.deberta import (
|
||||||
DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
|
DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
|
||||||
DebertaForMaskedLM,
|
DebertaForMaskedLM,
|
||||||
|
@ -59,6 +59,7 @@ from . import (
|
|||||||
ctrl,
|
ctrl,
|
||||||
cvt,
|
cvt,
|
||||||
data2vec,
|
data2vec,
|
||||||
|
dbrx,
|
||||||
deberta,
|
deberta,
|
||||||
deberta_v2,
|
deberta_v2,
|
||||||
decision_transformer,
|
decision_transformer,
|
||||||
|
@ -77,6 +77,7 @@ CONFIG_MAPPING_NAMES = OrderedDict(
|
|||||||
("data2vec-audio", "Data2VecAudioConfig"),
|
("data2vec-audio", "Data2VecAudioConfig"),
|
||||||
("data2vec-text", "Data2VecTextConfig"),
|
("data2vec-text", "Data2VecTextConfig"),
|
||||||
("data2vec-vision", "Data2VecVisionConfig"),
|
("data2vec-vision", "Data2VecVisionConfig"),
|
||||||
|
("dbrx", "DbrxConfig"),
|
||||||
("deberta", "DebertaConfig"),
|
("deberta", "DebertaConfig"),
|
||||||
("deberta-v2", "DebertaV2Config"),
|
("deberta-v2", "DebertaV2Config"),
|
||||||
("decision_transformer", "DecisionTransformerConfig"),
|
("decision_transformer", "DecisionTransformerConfig"),
|
||||||
@ -340,6 +341,7 @@ MODEL_NAMES_MAPPING = OrderedDict(
|
|||||||
("data2vec-audio", "Data2VecAudio"),
|
("data2vec-audio", "Data2VecAudio"),
|
||||||
("data2vec-text", "Data2VecText"),
|
("data2vec-text", "Data2VecText"),
|
||||||
("data2vec-vision", "Data2VecVision"),
|
("data2vec-vision", "Data2VecVision"),
|
||||||
|
("dbrx", "DBRX"),
|
||||||
("deberta", "DeBERTa"),
|
("deberta", "DeBERTa"),
|
||||||
("deberta-v2", "DeBERTa-v2"),
|
("deberta-v2", "DeBERTa-v2"),
|
||||||
("decision_transformer", "Decision Transformer"),
|
("decision_transformer", "Decision Transformer"),
|
||||||
|
@ -75,6 +75,7 @@ MODEL_MAPPING_NAMES = OrderedDict(
|
|||||||
("data2vec-audio", "Data2VecAudioModel"),
|
("data2vec-audio", "Data2VecAudioModel"),
|
||||||
("data2vec-text", "Data2VecTextModel"),
|
("data2vec-text", "Data2VecTextModel"),
|
||||||
("data2vec-vision", "Data2VecVisionModel"),
|
("data2vec-vision", "Data2VecVisionModel"),
|
||||||
|
("dbrx", "DbrxModel"),
|
||||||
("deberta", "DebertaModel"),
|
("deberta", "DebertaModel"),
|
||||||
("deberta-v2", "DebertaV2Model"),
|
("deberta-v2", "DebertaV2Model"),
|
||||||
("decision_transformer", "DecisionTransformerModel"),
|
("decision_transformer", "DecisionTransformerModel"),
|
||||||
@ -439,6 +440,7 @@ MODEL_FOR_CAUSAL_LM_MAPPING_NAMES = OrderedDict(
|
|||||||
("cpmant", "CpmAntForCausalLM"),
|
("cpmant", "CpmAntForCausalLM"),
|
||||||
("ctrl", "CTRLLMHeadModel"),
|
("ctrl", "CTRLLMHeadModel"),
|
||||||
("data2vec-text", "Data2VecTextForCausalLM"),
|
("data2vec-text", "Data2VecTextForCausalLM"),
|
||||||
|
("dbrx", "DbrxForCausalLM"),
|
||||||
("electra", "ElectraForCausalLM"),
|
("electra", "ElectraForCausalLM"),
|
||||||
("ernie", "ErnieForCausalLM"),
|
("ernie", "ErnieForCausalLM"),
|
||||||
("falcon", "FalconForCausalLM"),
|
("falcon", "FalconForCausalLM"),
|
||||||
|
@ -150,6 +150,7 @@ else:
|
|||||||
("ctrl", ("CTRLTokenizer", None)),
|
("ctrl", ("CTRLTokenizer", None)),
|
||||||
("data2vec-audio", ("Wav2Vec2CTCTokenizer", None)),
|
("data2vec-audio", ("Wav2Vec2CTCTokenizer", None)),
|
||||||
("data2vec-text", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
|
("data2vec-text", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
|
||||||
|
("dbrx", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
|
||||||
("deberta", ("DebertaTokenizer", "DebertaTokenizerFast" if is_tokenizers_available() else None)),
|
("deberta", ("DebertaTokenizer", "DebertaTokenizerFast" if is_tokenizers_available() else None)),
|
||||||
(
|
(
|
||||||
"deberta-v2",
|
"deberta-v2",
|
||||||
|
51
src/transformers/models/dbrx/__init__.py
Normal file
51
src/transformers/models/dbrx/__init__.py
Normal file
@ -0,0 +1,51 @@
|
|||||||
|
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
from typing import TYPE_CHECKING
|
||||||
|
|
||||||
|
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
|
||||||
|
|
||||||
|
|
||||||
|
_import_structure = {
|
||||||
|
"configuration_dbrx": ["DbrxConfig"],
|
||||||
|
}
|
||||||
|
|
||||||
|
try:
|
||||||
|
if not is_torch_available():
|
||||||
|
raise OptionalDependencyNotAvailable()
|
||||||
|
except OptionalDependencyNotAvailable:
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
_import_structure["modeling_dbrx"] = [
|
||||||
|
"DbrxForCausalLM",
|
||||||
|
"DbrxModel",
|
||||||
|
"DbrxPreTrainedModel",
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
if TYPE_CHECKING:
|
||||||
|
from .configuration_dbrx import DbrxConfig
|
||||||
|
|
||||||
|
try:
|
||||||
|
if not is_torch_available():
|
||||||
|
raise OptionalDependencyNotAvailable()
|
||||||
|
except OptionalDependencyNotAvailable:
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
from .modeling_dbrx import DbrxForCausalLM, DbrxModel, DbrxPreTrainedModel
|
||||||
|
|
||||||
|
|
||||||
|
else:
|
||||||
|
import sys
|
||||||
|
|
||||||
|
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
257
src/transformers/models/dbrx/configuration_dbrx.py
Normal file
257
src/transformers/models/dbrx/configuration_dbrx.py
Normal file
@ -0,0 +1,257 @@
|
|||||||
|
# coding=utf-8
|
||||||
|
# Copyright 2024 Databricks Mosaic Research and The HuggingFace Inc. team. All rights reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
""" DBRX model configuration """
|
||||||
|
|
||||||
|
from typing import Any, Optional
|
||||||
|
|
||||||
|
from ...configuration_utils import PretrainedConfig
|
||||||
|
from ...utils import logging
|
||||||
|
|
||||||
|
|
||||||
|
logger = logging.get_logger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class DbrxAttentionConfig(PretrainedConfig):
|
||||||
|
"""Configuration class for Dbrx Attention.
|
||||||
|
|
||||||
|
[`DbrxAttention`] class. It is used to instantiate attention layers
|
||||||
|
according to the specified arguments, defining the layers architecture.
|
||||||
|
|
||||||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||||
|
documentation from [`PretrainedConfig`] for more information.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
attn_pdrop (`float`, *optional*, defaults to 0.0):
|
||||||
|
The dropout probability for the attention layers.
|
||||||
|
clip_qkv (`float`, *optional*):
|
||||||
|
If set, clip the queries, keys, and values in the attention layer to this value.
|
||||||
|
kv_n_heads (`Optional[int]`, defaults to 1): For grouped_query_attention only, allow user to specify number of kv heads.
|
||||||
|
rope_theta (`float`, defaults to 10000.0): The base frequency for rope.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
attn_pdrop: float = 0.0,
|
||||||
|
clip_qkv: Optional[float] = None,
|
||||||
|
kv_n_heads: int = 1,
|
||||||
|
rope_theta: float = 10000.0,
|
||||||
|
**kwargs: Any,
|
||||||
|
):
|
||||||
|
super().__init__(**kwargs)
|
||||||
|
self.attn_pdrop = attn_pdrop
|
||||||
|
self.clip_qkv = clip_qkv
|
||||||
|
self.kv_n_heads = kv_n_heads
|
||||||
|
self.rope_theta = rope_theta
|
||||||
|
|
||||||
|
for k in ["model_type"]:
|
||||||
|
if k in kwargs:
|
||||||
|
kwargs.pop(k)
|
||||||
|
if len(kwargs) != 0:
|
||||||
|
raise ValueError(f"Found unknown {kwargs=}")
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def from_pretrained(cls, pretrained_model_name_or_path: str, **kwargs: Any) -> "PretrainedConfig":
|
||||||
|
cls._set_token_in_kwargs(kwargs)
|
||||||
|
|
||||||
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
||||||
|
|
||||||
|
if config_dict.get("model_type") == "dbrx":
|
||||||
|
config_dict = config_dict["attn_config"]
|
||||||
|
|
||||||
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
||||||
|
logger.warning(
|
||||||
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
||||||
|
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
||||||
|
)
|
||||||
|
|
||||||
|
return cls.from_dict(config_dict, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
class DbrxFFNConfig(PretrainedConfig):
|
||||||
|
"""Configuration class for Dbrx FFN.
|
||||||
|
|
||||||
|
[`DbrxFFN`] class. It is used to instantiate feedforward layers according to
|
||||||
|
the specified arguments, defining the layers architecture.
|
||||||
|
|
||||||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||||
|
documentation from [`PretrainedConfig`] for more information.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
ffn_act_fn (`dict`, *optional*, defaults to `None`): A dict specifying activation function for the FFN.
|
||||||
|
The dict should have a key 'name' with the value being the name of the activation function along with
|
||||||
|
any additional keyword arguments. If `None`, then set to `{"name": "silu"}`.
|
||||||
|
ffn_hidden_size (`int`, defaults to 3584): The hidden size of the feedforward network.
|
||||||
|
moe_num_experts (`int`, defaults to 4): The number of experts in the mixture of experts layer.
|
||||||
|
moe_top_k (`int`, defaults to 1): The number of experts to use in the mixture of experts layer.
|
||||||
|
moe_jitter_eps (`float`, *optional*, defaults to `None`): If not `None`, the jitter epsilon for the mixture of experts layer.
|
||||||
|
moe_loss_weight (`float`, defaults to 0.01): The loss weight for the mixture of experts layer.
|
||||||
|
moe_normalize_expert_weights (`float`, *optional*, defaults to 1.0): The normalization factor for the expert weights.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
ffn_act_fn: dict = None,
|
||||||
|
ffn_hidden_size: int = 3584,
|
||||||
|
moe_num_experts: int = 4,
|
||||||
|
moe_top_k: int = 1,
|
||||||
|
moe_jitter_eps: Optional[float] = None,
|
||||||
|
moe_loss_weight: float = 0.01,
|
||||||
|
moe_normalize_expert_weights: Optional[float] = 1.0,
|
||||||
|
**kwargs: Any,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
if ffn_act_fn is None:
|
||||||
|
ffn_act_fn = {"name": "silu"}
|
||||||
|
self.ffn_act_fn = ffn_act_fn
|
||||||
|
self.ffn_hidden_size = ffn_hidden_size
|
||||||
|
self.moe_num_experts = moe_num_experts
|
||||||
|
self.moe_top_k = moe_top_k
|
||||||
|
self.moe_jitter_eps = moe_jitter_eps
|
||||||
|
self.moe_loss_weight = moe_loss_weight
|
||||||
|
self.moe_normalize_expert_weights = moe_normalize_expert_weights
|
||||||
|
|
||||||
|
for k in ["model_type"]:
|
||||||
|
if k in kwargs:
|
||||||
|
kwargs.pop(k)
|
||||||
|
if len(kwargs) != 0:
|
||||||
|
raise ValueError(f"Found unknown {kwargs=}")
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def from_pretrained(cls, pretrained_model_name_or_path: str, **kwargs: Any) -> "PretrainedConfig":
|
||||||
|
cls._set_token_in_kwargs(kwargs)
|
||||||
|
|
||||||
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
||||||
|
|
||||||
|
if config_dict.get("model_type") == "dbrx":
|
||||||
|
config_dict = config_dict["ffn_config"]
|
||||||
|
|
||||||
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
||||||
|
logger.warning(
|
||||||
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
||||||
|
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
||||||
|
)
|
||||||
|
|
||||||
|
return cls.from_dict(config_dict, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
class DbrxConfig(PretrainedConfig):
|
||||||
|
r"""
|
||||||
|
|
||||||
|
This is the configuration class to store the configuration of a [`DbrxModel`]. It is used to instantiate a Dbrx model according to the
|
||||||
|
specified arguments, defining the model architecture. Instantiating a configuration with the
|
||||||
|
defaults will yield a different configuration to that of the [databricks/dbrx-instruct](https://huggingface.co/databricks/dbrx-instruct) architecture.
|
||||||
|
|
||||||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||||
|
documentation from [`PretrainedConfig`] for more information.
|
||||||
|
|
||||||
|
|
||||||
|
Args:
|
||||||
|
d_model (`int`, *optional*, defaults to 2048):
|
||||||
|
Dimensionality of the embeddings and hidden states.
|
||||||
|
n_heads (`int`, *optional*, defaults to 16):
|
||||||
|
Number of attention heads for each attention layer in the Transformer encoder.
|
||||||
|
n_layers (`int`, *optional*, defaults to 24):
|
||||||
|
Number of hidden layers in the Transformer encoder.
|
||||||
|
max_seq_len (`int`, *optional*, defaults to 2048):
|
||||||
|
The maximum sequence length of the model.
|
||||||
|
vocab_size (`int`, *optional*, defaults to 32000):
|
||||||
|
Vocabulary size of the Dbrx model. Defines the maximum number of different tokens that can be represented by
|
||||||
|
the `inputs_ids` passed when calling [`DbrxModel`].
|
||||||
|
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
||||||
|
The dropout probability applied to the attention output before combining with residual.
|
||||||
|
emb_pdrop (`float`, *optional*, defaults to 0.0):
|
||||||
|
The dropout probability for the embedding layer.
|
||||||
|
attn_config (`dict`, *optional*):
|
||||||
|
A dictionary used to configure the model's attention module.
|
||||||
|
ffn_config (`dict`, *optional*):
|
||||||
|
A dictionary used to configure the model's FFN module.
|
||||||
|
use_cache (`bool`, *optional*, defaults to `True`):
|
||||||
|
Whether or not the model should return the last key/values attentions (not used by all models).
|
||||||
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||||
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||||
|
output_router_logits (`bool`, *optional*, defaults to `False`):
|
||||||
|
Whether or not the router logits should be returned by the model. Enabling this will also
|
||||||
|
allow the model to output the auxiliary loss. See [here]() for more details.
|
||||||
|
|
||||||
|
|
||||||
|
Example:
|
||||||
|
```python
|
||||||
|
>>> from transformers import DbrxConfig, DbrxModel
|
||||||
|
|
||||||
|
>>> # Initializing a Dbrx configuration
|
||||||
|
>>> configuration = DbrxConfig(n_layers=2, d_model=256, n_heads=8, vocab_size=128)
|
||||||
|
|
||||||
|
>>> # Initializing a model (with random weights) from the configuration
|
||||||
|
>>> model = DbrxModel(configuration)
|
||||||
|
|
||||||
|
>>> # Accessing the model configuration
|
||||||
|
>>> configuration = model.config
|
||||||
|
```
|
||||||
|
"""
|
||||||
|
|
||||||
|
model_type = "dbrx"
|
||||||
|
attribute_map = {
|
||||||
|
"num_attention_heads": "n_heads",
|
||||||
|
"hidden_size": "d_model",
|
||||||
|
"num_hidden_layers": "n_layers",
|
||||||
|
"max_position_embeddings": "max_seq_len",
|
||||||
|
}
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
d_model: int = 2048,
|
||||||
|
n_heads: int = 16,
|
||||||
|
n_layers: int = 24,
|
||||||
|
max_seq_len: int = 2048,
|
||||||
|
vocab_size: int = 32000,
|
||||||
|
resid_pdrop: float = 0.0,
|
||||||
|
emb_pdrop: float = 0.0,
|
||||||
|
attn_config: Optional[DbrxAttentionConfig] = None,
|
||||||
|
ffn_config: Optional[DbrxFFNConfig] = None,
|
||||||
|
use_cache: bool = True,
|
||||||
|
initializer_range: float = 0.02,
|
||||||
|
output_router_logits: bool = False,
|
||||||
|
**kwargs: Any,
|
||||||
|
):
|
||||||
|
if attn_config is None:
|
||||||
|
self.attn_config = DbrxAttentionConfig()
|
||||||
|
elif isinstance(attn_config, dict):
|
||||||
|
self.attn_config = DbrxAttentionConfig(**attn_config)
|
||||||
|
else:
|
||||||
|
self.attn_config = attn_config
|
||||||
|
|
||||||
|
if ffn_config is None:
|
||||||
|
self.ffn_config = DbrxFFNConfig()
|
||||||
|
elif isinstance(ffn_config, dict):
|
||||||
|
self.ffn_config = DbrxFFNConfig(**ffn_config)
|
||||||
|
else:
|
||||||
|
self.ffn_config = ffn_config
|
||||||
|
|
||||||
|
self.d_model = d_model
|
||||||
|
self.n_heads = n_heads
|
||||||
|
self.n_layers = n_layers
|
||||||
|
self.max_seq_len = max_seq_len
|
||||||
|
self.vocab_size = vocab_size
|
||||||
|
self.resid_pdrop = resid_pdrop
|
||||||
|
self.emb_pdrop = emb_pdrop
|
||||||
|
self.use_cache = use_cache
|
||||||
|
self.initializer_range = initializer_range
|
||||||
|
self.output_router_logits = output_router_logits
|
||||||
|
|
||||||
|
tie_word_embeddings = kwargs.pop("tie_word_embeddings", False)
|
||||||
|
if tie_word_embeddings:
|
||||||
|
raise ValueError("tie_word_embeddings is not supported for DBRX models.")
|
||||||
|
|
||||||
|
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
1523
src/transformers/models/dbrx/modeling_dbrx.py
Normal file
1523
src/transformers/models/dbrx/modeling_dbrx.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -2457,6 +2457,27 @@ class Data2VecVisionPreTrainedModel(metaclass=DummyObject):
|
|||||||
requires_backends(self, ["torch"])
|
requires_backends(self, ["torch"])
|
||||||
|
|
||||||
|
|
||||||
|
class DbrxForCausalLM(metaclass=DummyObject):
|
||||||
|
_backends = ["torch"]
|
||||||
|
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
requires_backends(self, ["torch"])
|
||||||
|
|
||||||
|
|
||||||
|
class DbrxModel(metaclass=DummyObject):
|
||||||
|
_backends = ["torch"]
|
||||||
|
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
requires_backends(self, ["torch"])
|
||||||
|
|
||||||
|
|
||||||
|
class DbrxPreTrainedModel(metaclass=DummyObject):
|
||||||
|
_backends = ["torch"]
|
||||||
|
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
requires_backends(self, ["torch"])
|
||||||
|
|
||||||
|
|
||||||
DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
||||||
|
|
||||||
|
|
||||||
|
@ -25,7 +25,7 @@ Jump to the [Add new model like section](#add-new-model-like-command) to learn h
|
|||||||
|
|
||||||
## Cookiecutter Templates
|
## Cookiecutter Templates
|
||||||
|
|
||||||
Using the `cookiecutter` utility requires to have all the `dev` dependencies installed. Let's first clone the
|
Using the `cookiecutter` utility requires to have all the `dev` dependencies installed. Let's first clone the
|
||||||
repository and install it in our environment:
|
repository and install it in our environment:
|
||||||
|
|
||||||
```shell script
|
```shell script
|
||||||
@ -53,20 +53,20 @@ This should launch the `cookiecutter` package which should prompt you to fill in
|
|||||||
The `modelname` should be cased according to the plain text casing, i.e., BERT, RoBERTa, DeBERTa.
|
The `modelname` should be cased according to the plain text casing, i.e., BERT, RoBERTa, DeBERTa.
|
||||||
```
|
```
|
||||||
modelname [<ModelNAME>]:
|
modelname [<ModelNAME>]:
|
||||||
uppercase_modelname [<MODEL_NAME>]:
|
uppercase_modelname [<MODEL_NAME>]:
|
||||||
lowercase_modelname [<model_name>]:
|
lowercase_modelname [<model_name>]:
|
||||||
camelcase_modelname [<ModelName>]:
|
camelcase_modelname [<ModelName>]:
|
||||||
```
|
```
|
||||||
|
|
||||||
Fill in the `authors` with your team members:
|
Fill in the `authors` with your team members:
|
||||||
```
|
```
|
||||||
authors [The HuggingFace Team]:
|
authors [The HuggingFace Team]:
|
||||||
```
|
```
|
||||||
|
|
||||||
The checkpoint identifier is the checkpoint that will be used in the examples across the files. Put the name you wish,
|
The checkpoint identifier is the checkpoint that will be used in the examples across the files. Put the name you wish,
|
||||||
as it will appear on the modelhub. Do not forget to include the organisation.
|
as it will appear on the modelhub. Do not forget to include the organisation.
|
||||||
```
|
```
|
||||||
checkpoint_identifier [organisation/<model_name>-base-cased]:
|
checkpoint_identifier [organisation/<model_name>-base-cased]:
|
||||||
```
|
```
|
||||||
|
|
||||||
The tokenizer should either be based on BERT if it behaves exactly like the BERT tokenizer, or a standalone otherwise.
|
The tokenizer should either be based on BERT if it behaves exactly like the BERT tokenizer, or a standalone otherwise.
|
||||||
@ -74,19 +74,19 @@ The tokenizer should either be based on BERT if it behaves exactly like the BERT
|
|||||||
Select tokenizer_type:
|
Select tokenizer_type:
|
||||||
1 - Based on BERT
|
1 - Based on BERT
|
||||||
2 - Standalone
|
2 - Standalone
|
||||||
Choose from 1, 2 [1]:
|
Choose from 1, 2 [1]:
|
||||||
```
|
```
|
||||||
<!---
|
<!---
|
||||||
Choose if your model is an encoder-decoder, or an encoder-only architecture.
|
Choose if your model is an encoder-decoder, or an encoder-only architecture.
|
||||||
|
|
||||||
If your model is an encoder-only architecture, the generated architecture will be based on the BERT model.
|
If your model is an encoder-only architecture, the generated architecture will be based on the BERT model.
|
||||||
If your model is an encoder-decoder architecture, the generated architecture will be based on the BART model. You can,
|
If your model is an encoder-decoder architecture, the generated architecture will be based on the BART model. You can,
|
||||||
of course, edit the files once the generation is complete.
|
of course, edit the files once the generation is complete.
|
||||||
```
|
```
|
||||||
Select is_encoder_decoder_model:
|
Select is_encoder_decoder_model:
|
||||||
1 - True
|
1 - True
|
||||||
2 - False
|
2 - False
|
||||||
Choose from 1, 2 [1]:
|
Choose from 1, 2 [1]:
|
||||||
```
|
```
|
||||||
-->
|
-->
|
||||||
|
|
||||||
@ -97,8 +97,8 @@ src/transformers/models/<model_name>/configuration_<model_name>.py
|
|||||||
src/transformers/models/<model_name>/modeling_<model_name>.py
|
src/transformers/models/<model_name>/modeling_<model_name>.py
|
||||||
src/transformers/models/<model_name>/modeling_tf_<model_name>.py
|
src/transformers/models/<model_name>/modeling_tf_<model_name>.py
|
||||||
src/transformers/models/<model_name>/tokenization_<model_name>.py
|
src/transformers/models/<model_name>/tokenization_<model_name>.py
|
||||||
tests/test_modeling_<model_name>.py
|
tests/models/<model_name>/test_modeling_<model_name>.py
|
||||||
tests/test_modeling_tf_<model_name>.py
|
tests/models/<model_name>/test_modeling_tf_<model_name>.py
|
||||||
```
|
```
|
||||||
|
|
||||||
You can run the tests to ensure that they all pass:
|
You can run the tests to ensure that they all pass:
|
||||||
@ -107,9 +107,9 @@ You can run the tests to ensure that they all pass:
|
|||||||
python -m pytest ./tests/test_*<model_name>*.py
|
python -m pytest ./tests/test_*<model_name>*.py
|
||||||
```
|
```
|
||||||
|
|
||||||
Feel free to modify each file to mimic the behavior of your model.
|
Feel free to modify each file to mimic the behavior of your model.
|
||||||
|
|
||||||
⚠ You should be careful about the classes preceded by the following line:️
|
⚠ You should be careful about the classes preceded by the following line:️
|
||||||
|
|
||||||
```python
|
```python
|
||||||
# Copied from transformers.[...]
|
# Copied from transformers.[...]
|
||||||
@ -119,8 +119,8 @@ This line ensures that the copy does not diverge from the source. If it *should*
|
|||||||
is different, this line needs to be deleted. If you don't delete this line and run `make fix-copies`,
|
is different, this line needs to be deleted. If you don't delete this line and run `make fix-copies`,
|
||||||
your changes will be overwritten.
|
your changes will be overwritten.
|
||||||
|
|
||||||
Once you have edited the files to fit your architecture, simply re-run the tests (and edit them if a change
|
Once you have edited the files to fit your architecture, simply re-run the tests (and edit them if a change
|
||||||
is needed!) afterwards to make sure everything works as expected.
|
is needed!) afterwards to make sure everything works as expected.
|
||||||
|
|
||||||
Once the files are generated and you are happy with your changes, here's a checklist to ensure that your contribution
|
Once the files are generated and you are happy with your changes, here's a checklist to ensure that your contribution
|
||||||
will be merged quickly:
|
will be merged quickly:
|
||||||
@ -251,7 +251,7 @@ Once you're done, you can run the tests to ensure that they all pass:
|
|||||||
python -m pytest ./tests/test_*<model_name>*.py
|
python -m pytest ./tests/test_*<model_name>*.py
|
||||||
```
|
```
|
||||||
|
|
||||||
⚠ You should be careful about the classes preceded by the following line:️
|
⚠ You should be careful about the classes preceded by the following line:️
|
||||||
|
|
||||||
```python
|
```python
|
||||||
# Copied from transformers.[...]
|
# Copied from transformers.[...]
|
||||||
@ -261,8 +261,8 @@ This line ensures that the copy does not diverge from the source. If it *should*
|
|||||||
is different, this line needs to be deleted. If you don't delete this line and run `make fix-copies`,
|
is different, this line needs to be deleted. If you don't delete this line and run `make fix-copies`,
|
||||||
your changes will be overwritten.
|
your changes will be overwritten.
|
||||||
|
|
||||||
Once you have edited the files to fit your architecture, simply re-run the tests (and edit them if a change
|
Once you have edited the files to fit your architecture, simply re-run the tests (and edit them if a change
|
||||||
is needed!) afterwards to make sure everything works as expected.
|
is needed!) afterwards to make sure everything works as expected.
|
||||||
|
|
||||||
Once the files are generated and you are happy with your changes, here's a checklist to ensure that your contribution
|
Once the files are generated and you are happy with your changes, here's a checklist to ensure that your contribution
|
||||||
will be merged quickly:
|
will be merged quickly:
|
||||||
|
0
tests/models/dbrx/__init__.py
Normal file
0
tests/models/dbrx/__init__.py
Normal file
387
tests/models/dbrx/test_modeling_dbrx.py
Normal file
387
tests/models/dbrx/test_modeling_dbrx.py
Normal file
@ -0,0 +1,387 @@
|
|||||||
|
# coding=utf-8
|
||||||
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
""" Testing suite for the PyTorch DBRX model. """
|
||||||
|
|
||||||
|
|
||||||
|
import unittest
|
||||||
|
|
||||||
|
from parameterized import parameterized
|
||||||
|
|
||||||
|
from transformers import DbrxConfig, is_torch_available
|
||||||
|
from transformers.testing_utils import require_torch, slow, torch_device
|
||||||
|
|
||||||
|
from ...generation.test_utils import GenerationTesterMixin
|
||||||
|
from ...test_configuration_common import ConfigTester
|
||||||
|
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
|
||||||
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
||||||
|
|
||||||
|
|
||||||
|
if is_torch_available():
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from transformers import DbrxForCausalLM, DbrxModel
|
||||||
|
|
||||||
|
|
||||||
|
class DbrxModelTester:
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
parent,
|
||||||
|
hidden_size=32,
|
||||||
|
ffn_hidden_size=32,
|
||||||
|
num_attention_heads=4,
|
||||||
|
kv_n_heads=4,
|
||||||
|
num_hidden_layers=5,
|
||||||
|
max_position_embeddings=512,
|
||||||
|
type_vocab_size=16,
|
||||||
|
batch_size=13,
|
||||||
|
seq_length=7,
|
||||||
|
is_training=True,
|
||||||
|
use_input_mask=True,
|
||||||
|
use_token_type_ids=False,
|
||||||
|
use_labels=True,
|
||||||
|
use_cache=True,
|
||||||
|
type_sequence_label_size=2,
|
||||||
|
num_labels=3,
|
||||||
|
num_choices=4,
|
||||||
|
scope=None,
|
||||||
|
clip_qkv=8,
|
||||||
|
rope_theta=500000,
|
||||||
|
attn_config_model_type="",
|
||||||
|
emb_pdrop=0.0,
|
||||||
|
moe_jitter_eps=0,
|
||||||
|
moe_loss_weight=0.05,
|
||||||
|
moe_num_experts=16,
|
||||||
|
moe_top_k=4,
|
||||||
|
ffn_config_model_type="",
|
||||||
|
ffn_act_fn_name="gelu",
|
||||||
|
initializer_range=0.02,
|
||||||
|
output_router_logits=False,
|
||||||
|
resid_pdrop=0.0,
|
||||||
|
tie_word_embeddings=False,
|
||||||
|
torch_dtype="bfloat16",
|
||||||
|
vocab_size=99,
|
||||||
|
is_decoder=True,
|
||||||
|
pad_token_id=0,
|
||||||
|
):
|
||||||
|
# Parameters unique to testing
|
||||||
|
self.batch_size = batch_size
|
||||||
|
self.seq_length = seq_length
|
||||||
|
self.type_vocab_size = type_vocab_size
|
||||||
|
self.type_sequence_label_size = type_sequence_label_size
|
||||||
|
self.num_labels = num_labels
|
||||||
|
self.num_choices = num_choices
|
||||||
|
self.scope = scope
|
||||||
|
self.parent = parent
|
||||||
|
self.is_training = is_training
|
||||||
|
self.use_input_mask = use_input_mask
|
||||||
|
self.use_token_type_ids = use_token_type_ids
|
||||||
|
self.use_labels = use_labels
|
||||||
|
|
||||||
|
# attn_config params
|
||||||
|
self.clip_qkv = clip_qkv
|
||||||
|
self.kv_n_heads = kv_n_heads
|
||||||
|
self.rope_theta = rope_theta
|
||||||
|
self.attn_config_model_type = attn_config_model_type
|
||||||
|
|
||||||
|
# ffn_config params
|
||||||
|
self.ffn_hidden_size = ffn_hidden_size
|
||||||
|
self.moe_jitter_eps = moe_jitter_eps
|
||||||
|
self.moe_loss_weight = moe_loss_weight
|
||||||
|
self.moe_num_experts = moe_num_experts
|
||||||
|
self.moe_top_k = moe_top_k
|
||||||
|
self.ffn_config_model_type = ffn_config_model_type
|
||||||
|
self.ffn_act_fn_name = ffn_act_fn_name
|
||||||
|
|
||||||
|
# Other model params
|
||||||
|
self.hidden_size = hidden_size
|
||||||
|
self.num_hidden_layers = num_hidden_layers
|
||||||
|
self.num_attention_heads = num_attention_heads
|
||||||
|
self.max_position_embeddings = max_position_embeddings
|
||||||
|
self.vocab_size = vocab_size
|
||||||
|
self.use_cache = use_cache
|
||||||
|
self.initializer_range = initializer_range
|
||||||
|
self.emb_pdrop = emb_pdrop
|
||||||
|
self.output_router_logits = output_router_logits
|
||||||
|
self.resid_pdrop = resid_pdrop
|
||||||
|
self.tie_word_embeddings = tie_word_embeddings
|
||||||
|
self.torch_dtype = torch_dtype
|
||||||
|
self.is_decoder = is_decoder
|
||||||
|
self.pad_token_id = pad_token_id
|
||||||
|
|
||||||
|
# Make the dictionaries
|
||||||
|
self.ffn_config = {
|
||||||
|
"ffn_hidden_size": self.ffn_hidden_size,
|
||||||
|
"moe_jitter_eps": self.moe_jitter_eps,
|
||||||
|
"moe_loss_weight": self.moe_loss_weight,
|
||||||
|
"moe_num_experts": self.moe_num_experts,
|
||||||
|
"moe_top_k": self.moe_top_k,
|
||||||
|
"model_type": self.ffn_config_model_type,
|
||||||
|
"ffn_act_fn": {"name": self.ffn_act_fn_name},
|
||||||
|
}
|
||||||
|
self.attn_config = {
|
||||||
|
"clip_qkv": self.clip_qkv,
|
||||||
|
"kv_n_heads": self.kv_n_heads,
|
||||||
|
"model_type": self.attn_config_model_type,
|
||||||
|
"rope_theta": self.rope_theta,
|
||||||
|
}
|
||||||
|
|
||||||
|
def prepare_config_and_inputs(self):
|
||||||
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
||||||
|
|
||||||
|
input_mask = None
|
||||||
|
if self.use_input_mask:
|
||||||
|
input_mask = random_attention_mask([self.batch_size, self.seq_length])
|
||||||
|
|
||||||
|
token_type_ids = None
|
||||||
|
if self.use_token_type_ids:
|
||||||
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
||||||
|
|
||||||
|
sequence_labels = None
|
||||||
|
token_labels = None
|
||||||
|
choice_labels = None
|
||||||
|
if self.use_labels:
|
||||||
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
||||||
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
||||||
|
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
||||||
|
|
||||||
|
config = self.get_config()
|
||||||
|
|
||||||
|
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||||
|
|
||||||
|
def get_config(self):
|
||||||
|
# Behind the scenes, `DbrxConfig` maps the parameters `hidden_size`, `num_hidden_layers`,
|
||||||
|
# `num_attention_heads`, `max_position_embeddings` to the parameters `d_model`, `n_layers`,
|
||||||
|
# `n_heads`, `max_seq_len` respectively. We use the first group of parameters because
|
||||||
|
# other tests expect every model to have these parameters with these specific names.
|
||||||
|
config = DbrxConfig(
|
||||||
|
vocab_size=self.vocab_size,
|
||||||
|
hidden_size=self.hidden_size, # mapped to `d_model`
|
||||||
|
num_hidden_layers=self.num_hidden_layers, # mapped to `n_layers`
|
||||||
|
num_attention_heads=self.num_attention_heads, # mapped to `n_heads`
|
||||||
|
max_position_embeddings=self.max_position_embeddings, # mapped to `max_seq_len`
|
||||||
|
attn_config=self.attn_config,
|
||||||
|
ffn_config=self.ffn_config,
|
||||||
|
resid_pdrop=self.resid_pdrop,
|
||||||
|
emb_pdrop=self.emb_pdrop,
|
||||||
|
use_cache=self.use_cache,
|
||||||
|
initializer_range=self.initializer_range,
|
||||||
|
output_router_logits=self.output_router_logits,
|
||||||
|
is_decoder=self.is_decoder,
|
||||||
|
pad_token_id=self.pad_token_id,
|
||||||
|
)
|
||||||
|
return config
|
||||||
|
|
||||||
|
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model with Llama->Dbrx
|
||||||
|
def create_and_check_model(
|
||||||
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||||
|
):
|
||||||
|
model = DbrxModel(config=config)
|
||||||
|
model.to(torch_device)
|
||||||
|
model.eval()
|
||||||
|
result = model(input_ids, attention_mask=input_mask)
|
||||||
|
result = model(input_ids)
|
||||||
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||||
|
|
||||||
|
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model_as_decoder with Llama->Dbrx
|
||||||
|
def create_and_check_model_as_decoder(
|
||||||
|
self,
|
||||||
|
config,
|
||||||
|
input_ids,
|
||||||
|
token_type_ids,
|
||||||
|
input_mask,
|
||||||
|
sequence_labels,
|
||||||
|
token_labels,
|
||||||
|
choice_labels,
|
||||||
|
encoder_hidden_states,
|
||||||
|
encoder_attention_mask,
|
||||||
|
):
|
||||||
|
config.add_cross_attention = True
|
||||||
|
model = DbrxModel(config)
|
||||||
|
model.to(torch_device)
|
||||||
|
model.eval()
|
||||||
|
result = model(
|
||||||
|
input_ids,
|
||||||
|
attention_mask=input_mask,
|
||||||
|
encoder_hidden_states=encoder_hidden_states,
|
||||||
|
encoder_attention_mask=encoder_attention_mask,
|
||||||
|
)
|
||||||
|
result = model(
|
||||||
|
input_ids,
|
||||||
|
attention_mask=input_mask,
|
||||||
|
encoder_hidden_states=encoder_hidden_states,
|
||||||
|
)
|
||||||
|
result = model(input_ids, attention_mask=input_mask)
|
||||||
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||||
|
|
||||||
|
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_for_causal_lm with Llama->Dbrx
|
||||||
|
def create_and_check_for_causal_lm(
|
||||||
|
self,
|
||||||
|
config,
|
||||||
|
input_ids,
|
||||||
|
token_type_ids,
|
||||||
|
input_mask,
|
||||||
|
sequence_labels,
|
||||||
|
token_labels,
|
||||||
|
choice_labels,
|
||||||
|
encoder_hidden_states,
|
||||||
|
encoder_attention_mask,
|
||||||
|
):
|
||||||
|
model = DbrxForCausalLM(config=config)
|
||||||
|
model.to(torch_device)
|
||||||
|
model.eval()
|
||||||
|
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||||||
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||||
|
|
||||||
|
def create_and_check_decoder_model_past_large_inputs(
|
||||||
|
self,
|
||||||
|
config,
|
||||||
|
input_ids,
|
||||||
|
token_type_ids,
|
||||||
|
input_mask,
|
||||||
|
sequence_labels,
|
||||||
|
token_labels,
|
||||||
|
choice_labels,
|
||||||
|
encoder_hidden_states,
|
||||||
|
encoder_attention_mask,
|
||||||
|
):
|
||||||
|
config.is_decoder = True
|
||||||
|
config.add_cross_attention = True
|
||||||
|
model = DbrxForCausalLM(config=config)
|
||||||
|
model.to(torch_device)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
# first forward pass
|
||||||
|
outputs = model(
|
||||||
|
input_ids,
|
||||||
|
attention_mask=input_mask,
|
||||||
|
encoder_hidden_states=encoder_hidden_states,
|
||||||
|
encoder_attention_mask=encoder_attention_mask,
|
||||||
|
use_cache=True,
|
||||||
|
)
|
||||||
|
past_key_values = outputs.past_key_values
|
||||||
|
|
||||||
|
# create hypothetical multiple next token and extent to next_input_ids
|
||||||
|
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||||||
|
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||||||
|
|
||||||
|
# append to next input_ids and
|
||||||
|
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||||
|
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||||||
|
|
||||||
|
output_from_no_past = model(
|
||||||
|
next_input_ids,
|
||||||
|
attention_mask=next_attention_mask,
|
||||||
|
encoder_hidden_states=encoder_hidden_states,
|
||||||
|
encoder_attention_mask=encoder_attention_mask,
|
||||||
|
output_hidden_states=True,
|
||||||
|
)["hidden_states"][0]
|
||||||
|
output_from_past = model(
|
||||||
|
next_tokens,
|
||||||
|
attention_mask=next_attention_mask,
|
||||||
|
encoder_hidden_states=encoder_hidden_states,
|
||||||
|
encoder_attention_mask=encoder_attention_mask,
|
||||||
|
past_key_values=past_key_values,
|
||||||
|
output_hidden_states=True,
|
||||||
|
)["hidden_states"][0]
|
||||||
|
|
||||||
|
# select random slice
|
||||||
|
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||||
|
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||||||
|
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||||||
|
|
||||||
|
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||||||
|
|
||||||
|
# test that outputs are equal for slice
|
||||||
|
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||||
|
|
||||||
|
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common with Llama->Dbrx
|
||||||
|
def prepare_config_and_inputs_for_common(self):
|
||||||
|
config_and_inputs = self.prepare_config_and_inputs()
|
||||||
|
(
|
||||||
|
config,
|
||||||
|
input_ids,
|
||||||
|
token_type_ids,
|
||||||
|
input_mask,
|
||||||
|
sequence_labels,
|
||||||
|
token_labels,
|
||||||
|
choice_labels,
|
||||||
|
) = config_and_inputs
|
||||||
|
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
|
||||||
|
return config, inputs_dict
|
||||||
|
|
||||||
|
|
||||||
|
@require_torch
|
||||||
|
class DbrxModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
||||||
|
all_model_classes = (DbrxModel, DbrxForCausalLM) if is_torch_available() else ()
|
||||||
|
all_generative_model_classes = (DbrxForCausalLM,) if is_torch_available() else ()
|
||||||
|
pipeline_model_mapping = {"text-generation": DbrxForCausalLM} if is_torch_available() else {}
|
||||||
|
test_headmasking = False
|
||||||
|
test_pruning = False
|
||||||
|
|
||||||
|
def setUp(self):
|
||||||
|
self.model_tester = DbrxModelTester(self)
|
||||||
|
self.config_tester = ConfigTester(self, config_class=DbrxConfig, d_model=37)
|
||||||
|
|
||||||
|
def test_config(self):
|
||||||
|
self.config_tester.run_common_tests()
|
||||||
|
|
||||||
|
def test_model(self):
|
||||||
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||||
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
||||||
|
|
||||||
|
def test_model_various_embeddings(self):
|
||||||
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||||
|
for type in ["absolute", "relative_key", "relative_key_query"]:
|
||||||
|
config_and_inputs[0].position_embedding_type = type
|
||||||
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
||||||
|
|
||||||
|
@slow
|
||||||
|
def test_model_from_pretrained(self):
|
||||||
|
model_name = "eitanturok/dbrx-tiny"
|
||||||
|
model = DbrxModel.from_pretrained(model_name)
|
||||||
|
self.assertIsNotNone(model)
|
||||||
|
|
||||||
|
@unittest.skip("Dbrx models have weight tying disabled.")
|
||||||
|
def test_tied_weights_keys(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
@unittest.skip("TODO @gante fix this for Llama")
|
||||||
|
@parameterized.expand([(1, False), (1, True), (4, False)])
|
||||||
|
def test_new_cache_format(self, num_beams, do_sample):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
@require_torch
|
||||||
|
class DbrxModelIntegrationTest(unittest.TestCase):
|
||||||
|
@slow
|
||||||
|
def test_tiny_model_logits(self):
|
||||||
|
model = DbrxForCausalLM.from_pretrained("Rocketknight1/dbrx-tiny-random")
|
||||||
|
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]])
|
||||||
|
output = model(input_ids)[0]
|
||||||
|
vocab_size = model.vocab_size
|
||||||
|
|
||||||
|
expected_shape = torch.Size((1, 6, vocab_size))
|
||||||
|
self.assertEqual(output.shape, expected_shape)
|
||||||
|
|
||||||
|
expected_slice = torch.tensor(
|
||||||
|
[
|
||||||
|
[
|
||||||
|
[-1.6300e-04, 5.0118e-04, 2.5437e-04],
|
||||||
|
[2.0422e-05, 2.7210e-04, -1.5125e-04],
|
||||||
|
[-1.5105e-04, 4.6879e-04, 3.3309e-04],
|
||||||
|
]
|
||||||
|
]
|
||||||
|
)
|
||||||
|
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
|
Loading…
Reference in New Issue
Block a user