mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-19 20:48:22 +06:00
90 lines
3.3 KiB
Python
90 lines
3.3 KiB
Python
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
from transformers import GemmaTokenizer
|
|
from transformers.testing_utils import get_tests_dir, require_torch, require_vision
|
|
from transformers.utils import is_vision_available
|
|
|
|
from ...test_processing_common import ProcessorTesterMixin
|
|
|
|
|
|
if is_vision_available():
|
|
from transformers import (
|
|
PaliGemmaProcessor,
|
|
SiglipImageProcessor,
|
|
is_vision_available,
|
|
)
|
|
|
|
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")
|
|
|
|
|
|
@require_vision
|
|
class PaliGemmaProcessorTest(ProcessorTesterMixin, unittest.TestCase):
|
|
processor_class = PaliGemmaProcessor
|
|
|
|
def setUp(self):
|
|
self.tmpdirname = tempfile.mkdtemp()
|
|
image_processor = SiglipImageProcessor.from_pretrained("google/siglip-so400m-patch14-384")
|
|
image_processor.image_seq_length = 0
|
|
tokenizer = GemmaTokenizer(SAMPLE_VOCAB, keep_accents=True)
|
|
processor = PaliGemmaProcessor(image_processor=image_processor, tokenizer=tokenizer)
|
|
processor.save_pretrained(self.tmpdirname)
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmpdirname)
|
|
|
|
@require_torch
|
|
@require_vision
|
|
def test_image_seq_length(self):
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
image_processor = self.get_component("image_processor")
|
|
tokenizer = self.get_component("tokenizer", max_length=112, padding="max_length")
|
|
image_processor.image_seq_length = 14
|
|
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
|
|
inputs = processor(
|
|
text=input_str, images=image_input, return_tensors="pt", max_length=112, padding="max_length"
|
|
)
|
|
self.assertEqual(len(inputs["input_ids"][0]), 112 + 14)
|
|
|
|
@require_torch
|
|
@require_vision
|
|
def test_unstructured_kwargs_batched(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
image_processor = self.get_component("image_processor")
|
|
tokenizer = self.get_component("tokenizer")
|
|
|
|
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
input_str = ["lower newer", "upper older longer string"]
|
|
image_input = self.prepare_image_inputs() * 2
|
|
inputs = processor(
|
|
text=input_str,
|
|
images=image_input,
|
|
return_tensors="pt",
|
|
size={"height": 214, "width": 214},
|
|
padding="longest",
|
|
max_length=76,
|
|
)
|
|
|
|
self.assertEqual(inputs["pixel_values"].shape[2], 214)
|
|
|
|
self.assertEqual(len(inputs["input_ids"][0]), 10)
|