mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-20 04:58:22 +06:00
157 lines
6.6 KiB
Python
157 lines
6.6 KiB
Python
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
|
|
from torch import nn
|
|
from torch.nn import CrossEntropyLoss, MSELoss
|
|
|
|
from transformers import RobertaConfig
|
|
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
|
|
from transformers.models.roberta.modeling_roberta import (
|
|
ROBERTA_INPUTS_DOCSTRING,
|
|
ROBERTA_START_DOCSTRING,
|
|
RobertaEmbeddings,
|
|
)
|
|
|
|
from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy
|
|
|
|
|
|
@add_start_docstrings(
|
|
"The RoBERTa Model transformer with early exiting (DeeRoBERTa). ",
|
|
ROBERTA_START_DOCSTRING,
|
|
)
|
|
class DeeRobertaModel(DeeBertModel):
|
|
|
|
config_class = RobertaConfig
|
|
base_model_prefix = "roberta"
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
|
|
self.embeddings = RobertaEmbeddings(config)
|
|
self.init_weights()
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,
|
|
also takes care of multi-layer training. """,
|
|
ROBERTA_START_DOCSTRING,
|
|
)
|
|
class DeeRobertaForSequenceClassification(BertPreTrainedModel):
|
|
|
|
config_class = RobertaConfig
|
|
base_model_prefix = "roberta"
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.num_labels = config.num_labels
|
|
self.num_layers = config.num_hidden_layers
|
|
|
|
self.roberta = DeeRobertaModel(config)
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
|
|
|
|
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING)
|
|
def forward(
|
|
self,
|
|
input_ids=None,
|
|
attention_mask=None,
|
|
token_type_ids=None,
|
|
position_ids=None,
|
|
head_mask=None,
|
|
inputs_embeds=None,
|
|
labels=None,
|
|
output_layer=-1,
|
|
train_highway=False,
|
|
):
|
|
r"""
|
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
|
Labels for computing the sequence classification/regression loss.
|
|
Indices should be in :obj:`[0, ..., config.num_labels - 1]`.
|
|
If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
|
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
|
|
Returns:
|
|
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.RobertaConfig`) and inputs:
|
|
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`label` is provided):
|
|
Classification (or regression if config.num_labels==1) loss.
|
|
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`):
|
|
Classification (or regression if config.num_labels==1) scores (before SoftMax).
|
|
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
|
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
|
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
|
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
|
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
|
heads.
|
|
highway_exits (:obj:`tuple(tuple(torch.Tensor))`:
|
|
Tuple of each early exit's results (total length: number of layers)
|
|
Each tuple is again, a tuple of length 2 - the first entry is logits and the second entry is hidden states.
|
|
"""
|
|
|
|
exit_layer = self.num_layers
|
|
try:
|
|
outputs = self.roberta(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
token_type_ids=token_type_ids,
|
|
position_ids=position_ids,
|
|
head_mask=head_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
)
|
|
|
|
pooled_output = outputs[1]
|
|
|
|
pooled_output = self.dropout(pooled_output)
|
|
logits = self.classifier(pooled_output)
|
|
outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here
|
|
except HighwayException as e:
|
|
outputs = e.message
|
|
exit_layer = e.exit_layer
|
|
logits = outputs[0]
|
|
|
|
if not self.training:
|
|
original_entropy = entropy(logits)
|
|
highway_entropy = []
|
|
highway_logits_all = []
|
|
if labels is not None:
|
|
if self.num_labels == 1:
|
|
# We are doing regression
|
|
loss_fct = MSELoss()
|
|
loss = loss_fct(logits.view(-1), labels.view(-1))
|
|
else:
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
|
|
|
# work with highway exits
|
|
highway_losses = []
|
|
for highway_exit in outputs[-1]:
|
|
highway_logits = highway_exit[0]
|
|
if not self.training:
|
|
highway_logits_all.append(highway_logits)
|
|
highway_entropy.append(highway_exit[2])
|
|
if self.num_labels == 1:
|
|
# We are doing regression
|
|
loss_fct = MSELoss()
|
|
highway_loss = loss_fct(highway_logits.view(-1), labels.view(-1))
|
|
else:
|
|
loss_fct = CrossEntropyLoss()
|
|
highway_loss = loss_fct(highway_logits.view(-1, self.num_labels), labels.view(-1))
|
|
highway_losses.append(highway_loss)
|
|
|
|
if train_highway:
|
|
outputs = (sum(highway_losses[:-1]),) + outputs
|
|
# exclude the final highway, of course
|
|
else:
|
|
outputs = (loss,) + outputs
|
|
if not self.training:
|
|
outputs = outputs + ((original_entropy, highway_entropy), exit_layer)
|
|
if output_layer >= 0:
|
|
outputs = (
|
|
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
|
|
) # use the highway of the last layer
|
|
|
|
return outputs # (loss), logits, (hidden_states), (attentions), entropy
|