transformers/templates/adding_a_new_model/modeling_tf_xxx.py
2020-10-12 04:06:59 -04:00

843 lines
35 KiB
Python

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 XXX model. """
####################################################
# In this template, replace all the XXX (various casings) with your model name
####################################################
import tensorflow as tf
from .configuration_xxx import XxxConfig
from .file_utils import (
MULTIPLE_CHOICE_DUMMY_INPUTS,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_callable,
)
from .modeling_tf_outputs import (
TFBaseModelOutputWithPooling,
TFMaskedLMOutput,
TFMultipleChoiceModelOutput,
TFQuestionAnsweringModelOutput,
TFSequenceClassifierOutput,
TFTokenClassifierOutput,
)
from .modeling_tf_utils import (
TFMaskedLanguageModelingLoss,
TFMultipleChoiceLoss,
TFPreTrainedModel,
TFQuestionAnsweringLoss,
TFSequenceClassificationLoss,
TFTokenClassificationLoss,
get_initializer,
keras_serializable,
shape_list,
)
from .tokenization_utils import BatchEncoding
from .utils import logging
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "XXXConfig"
_TOKENIZER_FOR_DOC = "XxxTokenizer"
####################################################
# This list contrains shortcut names for some of
# the pretrained weights provided with the models
####################################################
TF_XXX_PRETRAINED_MODEL_ARCHIVE_LIST = [
"xxx-base-uncased",
"xxx-large-uncased",
]
####################################################
# TF 2.0 Models are constructed using Keras imperative API by sub-classing
# - tf.keras.layers.Layer for the layers and
# - TFPreTrainedModel for the models (itself a sub-class of tf.keras.Model)
####################################################
####################################################
# Here is an example of typical layer in a TF 2.0 model of the library
# The classes are usually identical to the PyTorch ones and prefixed with 'TF'.
#
# Note that class __init__ parameters includes **kwargs (send to 'super').
# This let us have a control on class scope and variable names:
# More precisely, we set the names of the class attributes (lower level layers) to
# to the equivalent attributes names in the PyTorch model so we can have equivalent
# class and scope structure between PyTorch and TF 2.0 models and easily load one in the other.
#
# See the conversion methods in modeling_tf_pytorch_utils.py for more details
####################################################
TFXxxAttention = tf.keras.layers.Layer
TFXxxIntermediate = tf.keras.layers.Layer
TFXxxOutput = tf.keras.layers.Layer
class TFXxxLayer(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.attention = TFXxxAttention(config, name="attention")
self.intermediate = TFXxxIntermediate(config, name="intermediate")
self.transformer_output = TFXxxOutput(config, name="output")
def call(self, inputs, training=False):
hidden_states, attention_mask, head_mask = inputs
attention_outputs = self.attention([hidden_states, attention_mask, head_mask], training=training)
attention_output = attention_outputs[0]
intermediate_output = self.intermediate(attention_output)
layer_output = self.transformer_output([intermediate_output, attention_output], training=training)
outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them
return outputs
####################################################
# The full model without a specific pretrained or finetuning head is
# provided as a tf.keras.layers.Layer usually called "TFXxxMainLayer"
####################################################
@keras_serializable
class TFXxxMainLayer(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
self.embeddings.vocab_size = value.shape[0]
def _prune_heads(self, heads_to_prune):
raise NotImplementedError # Not implemented yet in the library for TF 2.0 models
def call(
self,
inputs,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
):
if isinstance(inputs, (tuple, list)):
input_ids = inputs[0]
attention_mask = inputs[1] if len(inputs) > 1 else attention_mask
token_type_ids = inputs[2] if len(inputs) > 2 else token_type_ids
position_ids = inputs[3] if len(inputs) > 3 else position_ids
head_mask = inputs[4] if len(inputs) > 4 else head_mask
inputs_embeds = inputs[5] if len(inputs) > 5 else inputs_embeds
output_attentions = inputs[6] if len(inputs) > 6 else output_attentions
output_hidden_states = inputs[7] if len(inputs) > 7 else output_hidden_states
return_dict = inputs[8] if len(inputs) > 8 else return_dict
assert len(inputs) <= 9, "Too many inputs."
elif isinstance(inputs, (dict, BatchEncoding)):
input_ids = inputs.get("input_ids")
attention_mask = inputs.get("attention_mask", attention_mask)
token_type_ids = inputs.get("token_type_ids", token_type_ids)
position_ids = inputs.get("position_ids", position_ids)
head_mask = inputs.get("head_mask", head_mask)
inputs_embeds = inputs.get("inputs_embeds", inputs_embeds)
output_attentions = inputs.get("output_attentions", output_attentions)
output_hidden_states = inputs.get("output_hidden_states", output_hidden_states)
return_dict = inputs.get("return_dict", return_dict)
assert len(inputs) <= 9, "Too many inputs."
else:
input_ids = inputs
output_attentions = output_attentions if output_attentions is not None else self.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.output_hidden_states
return_dict = return_dict if return_dict is not None else self.return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if attention_mask is None:
attention_mask = tf.fill(input_shape, 1)
if token_type_ids is None:
token_type_ids = tf.fill(input_shape, 0)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
extended_attention_mask = attention_mask[:, tf.newaxis, tf.newaxis, :]
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = tf.cast(extended_attention_mask, tf.float32)
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if head_mask is not None:
raise NotImplementedError
else:
head_mask = [None] * self.num_hidden_layers
# head_mask = tf.constant([0] * self.num_hidden_layers)
embedding_output = self.embeddings(input_ids, position_ids, token_type_ids, inputs_embeds, training=training)
encoder_outputs = self.encoder(
embedding_output,
extended_attention_mask,
head_mask,
output_attentions,
output_hidden_states,
return_dict,
training=training,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output)
if not return_dict:
return (
sequence_output,
pooled_output,
) + encoder_outputs[1:]
return TFBaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
####################################################
# TFXxxPreTrainedModel is a sub-class of tf.keras.Model
# which take care of loading and saving pretrained weights
# and various common utilities.
# Here you just need to specify a few (self-explanatory)
# pointers for your model.
####################################################
class TFXxxPreTrainedModel(TFPreTrainedModel):
"""An abstract class to handle weights initialization and
a simple interface for downloading and loading pretrained models.
"""
config_class = XxxConfig
base_model_prefix = "transformer"
XXX_START_DOCSTRING = r"""
The XXX model was proposed in
`XXX: Pre-training of Deep Bidirectional Transformers for Language Understanding
<https://arxiv.org/abs/1810.04805>`__ by....
This model inherits from :class:`~transformers.TFPreTrainedModel`. Check the superclass documentation for the
generic methods the library implements for all its model (such as downloading or saving, resizing the input
embeddings, pruning heads etc.)
This model is also a `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras/Model>`__ subclass.
Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general
usage and behavior.
.. note::
TF 2.0 models accepts two formats as inputs:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using :meth:`tf.keras.Model.fit` method which currently requires having
all the tensors in the first argument of the model call function: :obj:`model(inputs)`.
If you choose this second option, there are three possibilities you can use to gather all the input Tensors
in the first positional argument :
- a single Tensor with :obj:`input_ids` only and nothing else: :obj:`model(inputs_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
:obj:`model([input_ids, attention_mask])` or :obj:`model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
:obj:`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Parameters:
config (:class:`~transformers.XxxConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the configuration.
Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""
XXX_INPUTS_DOCSTRING = r"""
Args:
input_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using :class:`~transformers.BertTokenizer`.
See :func:`transformers.PreTrainedTokenizer.__call__` and
:func:`transformers.PreTrainedTokenizer.encode` for details.
`What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`({0})`, `optional`):
Mask to avoid performing attention on padding token indices.
Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
token_type_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`({0})`, `optional`):
Segment token indices to indicate first and second portions of the inputs.
Indices are selected in ``[0, 1]``:
- 0 corresponds to a `sentence A` token,
- 1 corresponds to a `sentence B` token.
`What are token type IDs? <../glossary.html#token-type-ids>`__
position_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`({0})`, `optional`):
Indices of positions of each input sequence tokens in the position embeddings.
Selected in the range ``[0, config.max_position_embeddings - 1]``.
`What are position IDs? <../glossary.html#position-ids>`__
head_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
Mask to nullify selected heads of the self-attention modules.
Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (:obj:`tf.Tensor` of shape :obj:`({0}, hidden_size)`, `optional`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
vectors than the model's internal embedding lookup matrix.
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
tensors for more detail.
output_hidden_states (:obj:`bool`, `optional`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
more detail.
return_dict (:obj:`bool`, `optional`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
training (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@add_start_docstrings(
"The bare XXX Model transformer outputing raw hidden-states without any specific head on top.",
XXX_START_DOCSTRING,
)
class TFXxxModel(TFXxxPreTrainedModel):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.transformer = TFXxxMainLayer(config, name="transformer")
@add_start_docstrings_to_callable(XXX_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="xxx-base-cased",
output_type=TFBaseModelOutputWithPooling,
config_class=_CONFIG_FOR_DOC,
)
def call(self, inputs, **kwargs):
outputs = self.transformer(inputs, **kwargs)
return outputs
TFXxxMLMHead = tf.keras.layers.Layer
@add_start_docstrings("""Xxx Model with a `language modeling` head on top. """, XXX_START_DOCSTRING)
class TFXxxForMaskedLM(TFXxxPreTrainedModel, TFMaskedLanguageModelingLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.transformer = TFXxxMainLayer(config, name="transformer")
self.mlm = TFXxxMLMHead(config, self.transformer.embeddings, name="mlm")
@add_start_docstrings_to_callable(XXX_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="xxx-base-cased",
output_type=TFMaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
inputs=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
labels=None,
training=False,
):
r"""
labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Labels for computing the masked language modeling loss.
Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels
in ``[0, ..., config.vocab_size]``
"""
return_dict = return_dict if return_dict is not None else self.transformer.return_dict
if isinstance(inputs, (tuple, list)):
labels = inputs[9] if len(inputs) > 9 else labels
if len(inputs) > 9:
inputs = inputs[:9]
elif isinstance(inputs, (dict, BatchEncoding)):
labels = inputs.pop("labels", labels)
outputs = self.transformer(
inputs,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
prediction_scores = self.mlm(sequence_output, training=training)
loss = None if labels is None else self.compute_loss(labels, prediction_scores)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFMaskedLMOutput(
loss=loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""XXX Model transformer with a sequence classification/regression head on top (a linear layer on top of
the pooled output) e.g. for GLUE tasks. """,
XXX_START_DOCSTRING,
)
class TFXxxForSequenceClassification(TFXxxPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.transformer = TFXxxMainLayer(config, name="transformer")
self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)
self.classifier = tf.keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
@add_start_docstrings_to_callable(XXX_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="xxx-base-cased",
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
inputs=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
labels=None,
training=False,
):
r"""
labels (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for computing the sequence classification/regression loss.
Indices should be in :obj:`[0, ..., config.num_labels - 1]`.
If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.transformer.return_dict
if isinstance(inputs, (tuple, list)):
labels = inputs[9] if len(inputs) > 9 else labels
if len(inputs) > 9:
inputs = inputs[:9]
elif isinstance(inputs, (dict, BatchEncoding)):
labels = inputs.pop("labels", labels)
outputs = self.transformer(
inputs,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output, training=training)
logits = self.classifier(pooled_output)
loss = None if labels is None else self.compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""XXX Model with a multiple choice classification head on top (a linear layer on top of
the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """,
XXX_START_DOCSTRING,
)
class TFXxxForMultipleChoice(TFXxxPreTrainedModel, TFMultipleChoiceLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.transformer = TFXxxMainLayer(config, name="transformer")
self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)
self.classifier = tf.keras.layers.Dense(
1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
@property
def dummy_inputs(self):
"""Dummy inputs to build the network.
Returns:
tf.Tensor with dummy inputs
"""
return {"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS)}
@add_start_docstrings_to_callable(XXX_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="xxx-base-cased",
output_type=TFMultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
inputs,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
labels=None,
training=False,
):
r"""
labels (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for computing the multiple choice classification loss.
Indices should be in ``[0, ..., num_choices]`` where :obj:`num_choices` is the size of the second dimension
of the input tensors. (See :obj:`input_ids` above)
heads.
"""
if isinstance(inputs, (tuple, list)):
input_ids = inputs[0]
attention_mask = inputs[1] if len(inputs) > 1 else attention_mask
token_type_ids = inputs[2] if len(inputs) > 2 else token_type_ids
position_ids = inputs[3] if len(inputs) > 3 else position_ids
head_mask = inputs[4] if len(inputs) > 4 else head_mask
inputs_embeds = inputs[5] if len(inputs) > 5 else inputs_embeds
output_attentions = inputs[6] if len(inputs) > 6 else output_attentions
output_hidden_states = inputs[7] if len(inputs) > 7 else output_hidden_states
return_dict = inputs[8] if len(inputs) > 8 else return_dict
labels = inputs[9] if len(inputs) > 9 else labels
assert len(inputs) <= 10, "Too many inputs."
elif isinstance(inputs, (dict, BatchEncoding)):
input_ids = inputs.get("input_ids")
attention_mask = inputs.get("attention_mask", attention_mask)
token_type_ids = inputs.get("token_type_ids", token_type_ids)
position_ids = inputs.get("position_ids", position_ids)
head_mask = inputs.get("head_mask", head_mask)
inputs_embeds = inputs.get("inputs_embeds", inputs_embeds)
output_attentions = inputs.get("output_attentions", output_attentions)
output_hidden_states = inputs.get("output_hidden_states", output_hidden_states)
return_dict = inputs.get("return_dict", return_dict)
labels = inputs.get("labels", labels)
assert len(inputs) <= 10, "Too many inputs."
else:
input_ids = inputs
return_dict = return_dict if return_dict is not None else self.transformer.return_dict
if input_ids is not None:
num_choices = shape_list(input_ids)[1]
seq_length = shape_list(input_ids)[2]
else:
num_choices = shape_list(inputs_embeds)[1]
seq_length = shape_list(inputs_embeds)[2]
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
flat_inputs_embeds = (
tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3]))
if inputs_embeds is not None
else None
)
flat_inputs = [
flat_input_ids,
flat_attention_mask,
flat_token_type_ids,
flat_position_ids,
head_mask,
flat_inputs_embeds,
output_attentions,
output_hidden_states,
return_dict,
]
outputs = self.transformer(flat_inputs, training=training)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output, training=training)
logits = self.classifier(pooled_output)
reshaped_logits = tf.reshape(logits, (-1, num_choices))
loss = None if labels is None else self.compute_loss(labels, reshaped_logits)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFMultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""XXX Model with a token classification head on top (a linear layer on top of
the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
XXX_START_DOCSTRING,
)
class TFXxxForTokenClassification(TFXxxPreTrainedModel, TFTokenClassificationLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.transformer = TFXxxMainLayer(config, name="transformer")
self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)
self.classifier = tf.keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
@add_start_docstrings_to_callable(XXX_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="xxx-base-cased",
output_type=TFTokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
inputs=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
labels=None,
training=False,
):
r"""
labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Labels for computing the token classification loss.
Indices should be in ``[0, ..., config.num_labels - 1]``.
"""
return_dict = return_dict if return_dict is not None else self.transformer.return_dict
if isinstance(inputs, (tuple, list)):
labels = inputs[9] if len(inputs) > 9 else labels
if len(inputs) > 9:
inputs = inputs[:9]
elif isinstance(inputs, (dict, BatchEncoding)):
labels = inputs.pop("labels", labels)
outputs = self.transformer(
inputs,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output, training=training)
logits = self.classifier(sequence_output)
loss = None if labels is None else self.compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFTokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""XXX Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layer on top of the hidden-states output to compute `span start logits` and `span end logits`). """,
XXX_START_DOCSTRING,
)
class TFXxxForQuestionAnswering(TFXxxPreTrainedModel, TFQuestionAnsweringLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.transformer = TFXxxMainLayer(config, name="transformer")
self.qa_outputs = tf.keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
)
@add_start_docstrings_to_callable(XXX_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="xxx-base-cased",
output_type=TFQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
inputs=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
start_positions=None,
end_positions=None,
training=False,
):
r"""
start_positions (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (:obj:`sequence_length`).
Position outside of the sequence are not taken into account for computing the loss.
end_positions (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (:obj:`sequence_length`).
Position outside of the sequence are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.transformer.return_dict
if isinstance(inputs, (tuple, list)):
start_positions = inputs[9] if len(inputs) > 9 else start_positions
end_positions = inputs[10] if len(inputs) > 10 else end_positions
if len(inputs) > 9:
inputs = inputs[:9]
elif isinstance(inputs, (dict, BatchEncoding)):
start_positions = inputs.pop("start_positions", start_positions)
end_positions = inputs.pop("end_positions", start_positions)
outputs = self.transformer(
inputs,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = tf.split(logits, 2, axis=-1)
start_logits = tf.squeeze(start_logits, axis=-1)
end_logits = tf.squeeze(end_logits, axis=-1)
loss = None
if start_positions is not None and end_positions is not None:
labels = {"start_position": start_positions}
labels["end_position"] = end_positions
loss = self.compute_loss(labels, (start_logits, end_logits))
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFQuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)