transformers/docs/source/en/index.md
João David d2cec09baa
Add TF swiftformer (#23342)
* Duplicate swiftformer

* Convert SwiftFormerPatchEmbedding

* Convert SwiftFormerEmbeddings

* Convert TFSwiftFormerMlp

* Convert TFSwiftFormerConvEncoder

* Convert TFSwiftFormerLocalRepresentation

* convert TFSwiftFormerEncoderBlock

* Convert SwiftFormerStage

* Convert SwiftFormerEncoder

* Add TFSWiftFormerPreTrainedModel

* Convert SwiftFormerForImageClassification

* Add kwargs and start drop path

* Fix syntax

* Change Model class name

* Add TFSwiftFormer to __init__

* Duplicate test_modeling_swiftformer

* First test conversions

* Change require_torch to require_tf

* Add exports to swiftformer __init__

* Add TFSwiftFormerModel wrapper

* Fix __init__ and run black

* Remove docstring from MainLayer, fix padding

* Use keras.layers.Activation on keras.Sequential

* Fix swiftformer exports

* Fix activation layer from config

* Remove post_inits

* Use tf.keras.layers.ZeroPadding2D

* Convert torch normalize

* Change tf test input shape

* Fix softmax and reduce_sum

* Convert expand_dims and repeat

* Add missing reshape and tranpose

* Simplify TFSwiftFormerEncoderBlock.call

* Fix mismatch in patch embeddings

* Fix expected output shape to match channels last

* Fix swiftformer typo

* Disable test_onnx

* Fix TFSwiftFormerForImageClassification call

* Add unpack inputs

* Convert flatten(2).mean(-1)

* Change vision dummy inputs (to be reviewed)

* Change test_forward_signature to use .call

* Fix @unpack_inputs

* Set return_tensors="tf" and rename class

* Rename wrongly named patch_embeddings layer

* Add serving_output and change dummy_input shape

* Make dimensions BCHW and transpose inside embedding layer

* Change SwiftFormerEncoderBlock

* Fix ruff problems

* Add image size to swiftformer config

* Change tranpose to MainLayer and use -1 for reshape

* Remove serving_outputs and dummy_inputs

* Remove test_initialization test from tf model

* Make Sequential component a separate layer

* Fix layers' names

* Tranpose encoder outputs

* Fix tests and check if hidden states is not None

* Fix TFSwiftFormerForImageClassification

* Run make fixup

* Run make fix-copies

* Update modeling_tf_auto

* Update docs

* Fix modeling auto mapping

* Update modelint_tf_swiftformer docs

* Fill image_size doc and type

* Add reduction=None to loss computation

* Update docs

* make style

* Debug: Delete the tip to see if that changes anything

* Re-add tip

* Remove add_code_sample_docstrings

* Remove unused import

* Get the debug to actually tell us the problem it has with the docs

* Try a substitution to match the PyTorch file?

* Add swiftformer to ignore list

* Add build() methods

* Update copyright year

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Remove FIXME comment

* Remove from_pt

* Update copyright year

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Rename one-letter variables

* Remove FIXMEs related to momentum

* Remove old TODO comment

* Remove outstanding FIXME comments

* Get dropout rate from config

* Add specific dropout config for MLP

* Add convencoder dropout to config

* Pass config to SwiftFormerDropPath layer

* Fix drop_path variable name and add Adapted from comment

* Run ruff

* Removed copied from comment

* Run fix copies

* Change drop_path to identity to match pt

* Cleanup build() methods and move to new keras imports

* Update docs/source/en/model_doc/swiftformer.md

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Raise error if drop_path_rate > 0.0

* Apply suggestions from code review

Replace (self.dim), with self.dim,

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Remove drop_path function

* Add training to TFSwiftFormerEncoder

* Set self.built = True last

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Should have been added to previous commit

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Change default_feature_extractor to default_image_processor

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Import Keras from modeling_tf_utils

* Remove relative import

* Run ruff --fix

* Move import keras to tf_available

* Add copied from comment to test_forward_signature

* Reduce batch size and num_labels

* Extract loss logic to hf_compute_loss

* Run ruff format

---------

Co-authored-by: Matt <rocketknight1@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2024-04-19 18:31:43 +01:00

40 KiB

🤗 Transformers

State-of-the-art Machine Learning for PyTorch, TensorFlow, and JAX.

🤗 Transformers provides APIs and tools to easily download and train state-of-the-art pretrained models. Using pretrained models can reduce your compute costs, carbon footprint, and save you the time and resources required to train a model from scratch. These models support common tasks in different modalities, such as:

📝 Natural Language Processing: text classification, named entity recognition, question answering, language modeling, summarization, translation, multiple choice, and text generation.
🖼️ Computer Vision: image classification, object detection, and segmentation.
🗣️ Audio: automatic speech recognition and audio classification.
🐙 Multimodal: table question answering, optical character recognition, information extraction from scanned documents, video classification, and visual question answering.

🤗 Transformers support framework interoperability between PyTorch, TensorFlow, and JAX. This provides the flexibility to use a different framework at each stage of a model's life; train a model in three lines of code in one framework, and load it for inference in another. Models can also be exported to a format like ONNX and TorchScript for deployment in production environments.

Join the growing community on the Hub, forum, or Discord today!

If you are looking for custom support from the Hugging Face team

HuggingFace Expert Acceleration Program

Contents

The documentation is organized into five sections:

  • GET STARTED provides a quick tour of the library and installation instructions to get up and running.

  • TUTORIALS are a great place to start if you're a beginner. This section will help you gain the basic skills you need to start using the library.

  • HOW-TO GUIDES show you how to achieve a specific goal, like finetuning a pretrained model for language modeling or how to write and share a custom model.

  • CONCEPTUAL GUIDES offers more discussion and explanation of the underlying concepts and ideas behind models, tasks, and the design philosophy of 🤗 Transformers.

  • API describes all classes and functions:

    • MAIN CLASSES details the most important classes like configuration, model, tokenizer, and pipeline.
    • MODELS details the classes and functions related to each model implemented in the library.
    • INTERNAL HELPERS details utility classes and functions used internally.

Supported models and frameworks

The table below represents the current support in the library for each of those models, whether they have a Python tokenizer (called "slow"). A "fast" tokenizer backed by the 🤗 Tokenizers library, whether they have support in Jax (via Flax), PyTorch, and/or TensorFlow.

Model PyTorch support TensorFlow support Flax Support
ALBERT
ALIGN
AltCLIP
Audio Spectrogram Transformer
Autoformer
Bark
BART
BARThez
BARTpho
BEiT
BERT
Bert Generation
BertJapanese
BERTweet
BigBird
BigBird-Pegasus
BioGpt
BiT
Blenderbot
BlenderbotSmall
BLIP
BLIP-2
BLOOM
BORT
BridgeTower
BROS
ByT5
CamemBERT
CANINE
Chinese-CLIP
CLAP
CLIP
CLIPSeg
CLVP
CodeGen
CodeLlama
Cohere
Conditional DETR
ConvBERT
ConvNeXT
ConvNeXTV2
CPM
CPM-Ant
CTRL
CvT
Data2VecAudio
Data2VecText
Data2VecVision
DBRX
DeBERTa
DeBERTa-v2
Decision Transformer
Deformable DETR
DeiT
DePlot
Depth Anything
DETA
DETR
DialoGPT
DiNAT
DINOv2
DistilBERT
DiT
DonutSwin
DPR
DPT
EfficientFormer
EfficientNet
ELECTRA
EnCodec
Encoder decoder
ERNIE
ErnieM
ESM
FairSeq Machine-Translation
Falcon
FastSpeech2Conformer
FLAN-T5
FLAN-UL2
FlauBERT
FLAVA
FNet
FocalNet
Funnel Transformer
Fuyu
Gemma
GIT
GLPN
GPT Neo
GPT NeoX
GPT NeoX Japanese
GPT-J
GPT-Sw3
GPTBigCode
GPTSAN-japanese
Graphormer
Grounding DINO
GroupViT
HerBERT
Hubert
I-BERT
IDEFICS
Idefics2
ImageGPT
Informer
InstructBLIP
Jamba
Jukebox
KOSMOS-2
LayoutLM
LayoutLMv2
LayoutLMv3
LayoutXLM
LED
LeViT
LiLT
LLaMA
Llama2
LLaVa
LLaVA-NeXT
Longformer
LongT5
LUKE
LXMERT
M-CTC-T
M2M100
MADLAD-400
Mamba
Marian
MarkupLM
Mask2Former
MaskFormer
MatCha
mBART
mBART-50
MEGA
Megatron-BERT
Megatron-GPT2
MGP-STR
Mistral
Mixtral
mLUKE
MMS
MobileBERT
MobileNetV1
MobileNetV2
MobileViT
MobileViTV2
MPNet
MPT
MRA
MT5
MusicGen
MusicGen Melody
MVP
NAT
Nezha
NLLB
NLLB-MOE
Nougat
Nyströmformer
OLMo
OneFormer
OpenAI GPT
OpenAI GPT-2
OpenLlama
OPT
OWL-ViT
OWLv2
PatchTSMixer
PatchTST
Pegasus
PEGASUS-X
Perceiver
Persimmon
Phi
PhoBERT
Pix2Struct
PLBart
PoolFormer
Pop2Piano
ProphetNet
PVT
PVTv2
QDQBert
Qwen2
Qwen2MoE
RAG
REALM
RecurrentGemma
Reformer
RegNet
RemBERT
ResNet
RetriBERT
RoBERTa
RoBERTa-PreLayerNorm
RoCBert
RoFormer
RWKV
SAM
SeamlessM4T
SeamlessM4Tv2
SegFormer
SegGPT
SEW
SEW-D
SigLIP
Speech Encoder decoder
Speech2Text
SpeechT5
Splinter
SqueezeBERT
StableLm
Starcoder2
SuperPoint
SwiftFormer
Swin Transformer
Swin Transformer V2
Swin2SR
SwitchTransformers
T5
T5v1.1
Table Transformer
TAPAS
TAPEX
Time Series Transformer
TimeSformer
Trajectory Transformer
Transformer-XL
TrOCR
TVLT
TVP
UDOP
UL2
UMT5
UniSpeech
UniSpeechSat
UnivNet
UPerNet
VAN
VideoMAE
ViLT
VipLlava
Vision Encoder decoder
VisionTextDualEncoder
VisualBERT
ViT
ViT Hybrid
VitDet
ViTMAE
ViTMatte
ViTMSN
VITS
ViViT
Wav2Vec2
Wav2Vec2-BERT
Wav2Vec2-Conformer
Wav2Vec2Phoneme
WavLM
Whisper
X-CLIP
X-MOD
XGLM
XLM
XLM-ProphetNet
XLM-RoBERTa
XLM-RoBERTa-XL
XLM-V
XLNet
XLS-R
XLSR-Wav2Vec2
YOLOS
YOSO