mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-19 12:38:23 +06:00

* VLMs can work with embeds now * update more models * fix tests * fix copies * fixup * fix * style * unskip tests * fix copies * fix tests * style * omni modality models * qwen models had extra indentation * fix some other tests * fix copies * fix test last time * unrelated changes revert * we can't rely only on embeds * delete file * de-flake mistral3 * fix qwen models * fix style * fix tests * fix copies * deflake the test * modular reverted by fixes, fix again * flaky test, overwritten * fix copies * style
292 lines
13 KiB
Python
292 lines
13 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from typing import Optional, Union
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from transformers.models.llava.modeling_llava import (
|
|
LlavaCausalLMOutputWithPast,
|
|
LlavaForConditionalGeneration,
|
|
LlavaModel,
|
|
LlavaModelOutputWithPast,
|
|
LlavaPreTrainedModel,
|
|
)
|
|
|
|
from ...activations import ACT2FN
|
|
from ...utils import auto_docstring, is_torchdynamo_compiling, logging
|
|
from .configuration_vipllava import VipLlavaConfig
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class VipLlavaModelOutputWithPast(LlavaModelOutputWithPast):
|
|
pass
|
|
|
|
|
|
class VipLlavaCausalLMOutputWithPast(LlavaCausalLMOutputWithPast):
|
|
pass
|
|
|
|
|
|
class VipLlavaMultiModalProjector(nn.Module):
|
|
def __init__(self, config: VipLlavaConfig):
|
|
super().__init__()
|
|
num_feature_layers = 1 if isinstance(config.vision_feature_layers, int) else len(config.vision_feature_layers)
|
|
self.projector_layernorm = nn.LayerNorm(
|
|
num_feature_layers * config.vision_config.hidden_size, eps=config.projector_layernorm_eps
|
|
)
|
|
|
|
self.linear_1 = nn.Linear(
|
|
num_feature_layers * config.vision_config.hidden_size,
|
|
config.text_config.hidden_size,
|
|
bias=True,
|
|
)
|
|
self.act = ACT2FN[config.projector_hidden_act]
|
|
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
|
|
|
|
def forward(self, hidden_states):
|
|
hidden_states = self.projector_layernorm(hidden_states)
|
|
hidden_states = self.linear_1(hidden_states)
|
|
hidden_states = self.act(hidden_states)
|
|
hidden_states = self.linear_2(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class VipLlavaPreTrainedModel(LlavaPreTrainedModel):
|
|
pass
|
|
|
|
|
|
class VipLlavaModel(LlavaModel):
|
|
def get_image_features(
|
|
self, pixel_values: torch.FloatTensor, vision_feature_layers: Optional[Union[int, list[int]]] = None
|
|
):
|
|
"""
|
|
Obtains image last hidden states from the vision tower and apply multimodal projection.
|
|
|
|
Args:
|
|
pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`)
|
|
The tensors corresponding to the input images.
|
|
vision_feature_layers (`Union[int, list[int]]`):
|
|
The vision feature layer, or the list of indexes of the layers to select
|
|
the vision feature.
|
|
Returns:
|
|
image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`).
|
|
"""
|
|
vision_feature_layers = (
|
|
vision_feature_layers if vision_feature_layers is not None else self.config.vision_feature_layers
|
|
)
|
|
image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
|
|
|
|
# If multiple feature layers are provided (which is usually the case)
|
|
# then the image features are concatenated after the CLS is removed.
|
|
if isinstance(vision_feature_layers, int):
|
|
image_features = image_outputs.hidden_states[vision_feature_layers][:, 1:]
|
|
else:
|
|
# Usually, we select the features from index 1: the layers -2, -5, -8, -11 and 6
|
|
image_features = [image_outputs.hidden_states[index][:, 1:] for index in vision_feature_layers]
|
|
image_features = torch.cat(image_features, dim=-1)
|
|
image_features = self.multi_modal_projector(image_features)
|
|
return image_features
|
|
|
|
@auto_docstring
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
pixel_values: torch.FloatTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[list[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
vision_feature_layers: Optional[Union[int, list[int]]] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
**lm_kwargs,
|
|
) -> Union[tuple, VipLlavaModelOutputWithPast]:
|
|
r"""
|
|
vision_feature_layers (`Union[int, list[int]]`, *optional*):
|
|
The vision feature layer, or the list of indexes of the layers to select
|
|
the vision feature.
|
|
"""
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
vision_feature_layers = (
|
|
vision_feature_layers if vision_feature_layers is not None else self.config.vision_feature_layers
|
|
)
|
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None):
|
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.get_input_embeddings()(input_ids)
|
|
|
|
if pixel_values is not None:
|
|
image_features = self.get_image_features(
|
|
pixel_values=pixel_values, vision_feature_layers=vision_feature_layers
|
|
)
|
|
|
|
if input_ids is None:
|
|
special_image_mask = inputs_embeds == self.get_input_embeddings()(
|
|
torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device)
|
|
)
|
|
special_image_mask = special_image_mask.all(-1)
|
|
else:
|
|
special_image_mask = input_ids == self.config.image_token_id
|
|
|
|
n_image_tokens = (special_image_mask).sum()
|
|
special_image_mask = special_image_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
|
|
|
|
if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel():
|
|
n_image_features = image_features.shape[0] * image_features.shape[1]
|
|
raise ValueError(
|
|
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
|
|
)
|
|
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
|
|
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
|
|
|
|
outputs = self.language_model(
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=True,
|
|
cache_position=cache_position,
|
|
**lm_kwargs,
|
|
)
|
|
|
|
output = VipLlavaModelOutputWithPast(
|
|
last_hidden_state=outputs.last_hidden_state,
|
|
past_key_values=outputs.past_key_values,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
image_hidden_states=image_features if pixel_values is not None else None,
|
|
)
|
|
return output if return_dict else output.to_tuple()
|
|
|
|
|
|
class VipLlavaForConditionalGeneration(LlavaForConditionalGeneration):
|
|
def get_image_features(
|
|
self, pixel_values: torch.FloatTensor, vision_feature_layers: Optional[Union[int, list[int]]] = None
|
|
):
|
|
return self.model.get_image_features(pixel_values=pixel_values, vision_feature_layers=vision_feature_layers)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
pixel_values: torch.FloatTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[list[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
vision_feature_layers: Optional[Union[int, list[int]]] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
**lm_kwargs,
|
|
) -> Union[tuple, VipLlavaCausalLMOutputWithPast]:
|
|
r"""
|
|
vision_feature_layers (`Union[int, list[int]]`, *optional*):
|
|
The vision feature layer, or the list of indexes of the layers to select
|
|
the vision feature.
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> import torch
|
|
>>> from PIL import Image
|
|
>>> import requests
|
|
>>> from transformers import AutoProcessor, VipLlavaForConditionalGeneration
|
|
|
|
>>> model = VipLlavaForConditionalGeneration.from_pretrained("llava-hf/vip-llava-7b-hf", device_map="auto", torch_dtype=torch.float16)
|
|
>>> processor = AutoProcessor.from_pretrained("llava-hf/vip-llava-7b-hf")
|
|
|
|
>>> prompt = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.###Human: <image>\n{}###Assistant:"
|
|
>>> question = "Can you please describe this image?"
|
|
>>> prompt = prompt.format(question)
|
|
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-neg.png"
|
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
|
|
|
>>> inputs = processor(text=text, images=image, return_tensors="pt").to(0, torch.float16)
|
|
|
|
>>> # Generate
|
|
>>> generate_ids = model.generate(**inputs, max_new_tokens=20)
|
|
>>> processor.decode(generate_ids[0][len(inputs["input_ids"][0]):], skip_special_tokens=True)
|
|
The image features a brown and white cat sitting on a green surface, with a red ball in its
|
|
```"""
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
vision_feature_layers = (
|
|
vision_feature_layers if vision_feature_layers is not None else self.config.vision_feature_layers
|
|
)
|
|
|
|
outputs = self.model(
|
|
input_ids=input_ids,
|
|
pixel_values=pixel_values,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
vision_feature_layers=vision_feature_layers,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=True,
|
|
cache_position=cache_position,
|
|
**lm_kwargs,
|
|
)
|
|
|
|
hidden_states = outputs[0]
|
|
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size)
|
|
|
|
return VipLlavaCausalLMOutputWithPast(
|
|
loss=loss,
|
|
logits=logits,
|
|
past_key_values=outputs.past_key_values,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
image_hidden_states=outputs.image_hidden_states,
|
|
)
|
|
|
|
|
|
__all__ = ["VipLlavaModel", "VipLlavaForConditionalGeneration", "VipLlavaPreTrainedModel"]
|