mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-19 20:48:22 +06:00

* initial commit * add convert internvl * add first end-to-end working internvl * nit prompt and image proc * add working chat template * add conversion llama-based models * add tests * pass all tests * fix isort * fix modular after main merge * add video processing for internvl * add support for interlaced images and videos * Remove processing and config from modular, add more tests * add llama model tests * Modify processor for compatibility with refactored got ocr image processor * add comments in processor * Add docs and nits * change video processing to use custom sample_indices_fn * rebase and fix tests * add processor tests * Add changes Raushan review * Use the new attention interface for the vision model * nits * add support for custom video_load_backend * remove mention to InternVLTokenizer * refactor vision model to simplify logic * refactor processor for better readibility * fix copies * fix require av processor test * refactor internVL vision * Update processor and fix processing tests * fix docstring * update convert_weights for internvl3 * change image processor to fast by default * remove do_center_crop=True in convert_weights * force use_cache to True * push_to_hub before reloading * fix internVLVision for larger models * update convert weight for qk norm * fix convert_weights * fix eos_token_id in convert * update docs and integration tests * make modifs after review * fix wrong k_norm and reduce modular * change image_token_index to image_token_id * change checkpoint to OpenGVLab org * last nits * explicitely del self.num_key_value_groups * add extra special tokens
328 lines
12 KiB
Python
328 lines
12 KiB
Python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import inspect
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
from huggingface_hub import hf_hub_download
|
|
|
|
from transformers import AutoProcessor, AutoTokenizer, InternVLProcessor
|
|
from transformers.testing_utils import require_av, require_torch, require_vision
|
|
from transformers.utils import is_torch_available, is_vision_available
|
|
|
|
from ...test_processing_common import ProcessorTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
|
|
if is_vision_available():
|
|
from transformers import GotOcr2ImageProcessor
|
|
|
|
|
|
@require_vision
|
|
class InternVLProcessorTest(ProcessorTesterMixin, unittest.TestCase):
|
|
processor_class = InternVLProcessor
|
|
videos_input_name = "pixel_values"
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.tmpdirname = tempfile.mkdtemp()
|
|
|
|
image_processor = GotOcr2ImageProcessor(
|
|
do_resize=True,
|
|
size={"height": 20, "width": 20},
|
|
max_patches=2,
|
|
do_rescale=True,
|
|
rescale_factor=1 / 255,
|
|
do_normalize=True,
|
|
do_center_crop=True,
|
|
image_mean=[0.485, 0.456, 0.406],
|
|
image_std=[0.229, 0.224, 0.225],
|
|
do_convert_rgb=True,
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained("OpenGVLab/InternVL3-1B-hf", padding_side="left")
|
|
processor_kwargs = cls.prepare_processor_dict()
|
|
processor = InternVLProcessor.from_pretrained(
|
|
"OpenGVLab/InternVL3-1B-hf",
|
|
image_processor=image_processor,
|
|
tokenizer=tokenizer,
|
|
**processor_kwargs,
|
|
)
|
|
processor.save_pretrained(cls.tmpdirname)
|
|
cls.image_token = processor.fake_image_token
|
|
|
|
@staticmethod
|
|
def prepare_processor_dict():
|
|
return {"image_seq_length": 10}
|
|
|
|
def get_tokenizer(self, **kwargs):
|
|
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer
|
|
|
|
def get_image_processor(self, **kwargs):
|
|
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor
|
|
|
|
def get_processor(self, **kwargs):
|
|
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
shutil.rmtree(cls.tmpdirname, ignore_errors=True)
|
|
|
|
@require_av
|
|
@require_torch
|
|
def test_process_interleaved_images_videos(self):
|
|
processor = self.get_processor()
|
|
|
|
messages = [
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image",
|
|
"url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg",
|
|
},
|
|
{
|
|
"type": "image",
|
|
"url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg",
|
|
},
|
|
{"type": "text", "text": "What are the differences between these two images?"},
|
|
],
|
|
},
|
|
],
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "video",
|
|
"url": "https://huggingface.co/datasets/hf-internal-testing/fixtures_videos/resolve/main/tennis.mp4",
|
|
},
|
|
{"type": "text", "text": "What type of shot is the man performing?"},
|
|
],
|
|
},
|
|
],
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image",
|
|
"url": "https://llava-vl.github.io/static/images/view.jpg",
|
|
},
|
|
{"type": "text", "text": "Write a haiku for this image"},
|
|
],
|
|
}
|
|
],
|
|
]
|
|
|
|
inputs_batched = processor.apply_chat_template(
|
|
messages,
|
|
add_generation_prompt=True,
|
|
tokenize=True,
|
|
return_dict=True,
|
|
return_tensors="pt",
|
|
padding=True,
|
|
)
|
|
|
|
# Process non batched inputs to check if the pixel_values and input_ids are reconstructed in the correct order when batched together
|
|
images_patches_index = 0
|
|
for i, message in enumerate(messages):
|
|
inputs = processor.apply_chat_template(
|
|
message,
|
|
add_generation_prompt=True,
|
|
tokenize=True,
|
|
return_dict=True,
|
|
return_tensors="pt",
|
|
padding=True,
|
|
)
|
|
# We slice with [-inputs["input_ids"].shape[1] :] as the input_ids are left padded
|
|
torch.testing.assert_close(
|
|
inputs["input_ids"][0], inputs_batched["input_ids"][i][-inputs["input_ids"].shape[1] :]
|
|
)
|
|
torch.testing.assert_close(
|
|
inputs["pixel_values"],
|
|
inputs_batched["pixel_values"][
|
|
images_patches_index : images_patches_index + inputs["pixel_values"].shape[0]
|
|
],
|
|
)
|
|
images_patches_index += inputs["pixel_values"].shape[0]
|
|
|
|
# Override video chat_template tests as InternVLProcessor returns flattened video features
|
|
@require_av
|
|
def test_apply_chat_template_video_special_processing(self):
|
|
"""
|
|
Tests that models can use their own preprocessing to preprocess conversations.
|
|
"""
|
|
processor = self.get_processor()
|
|
if processor.chat_template is None:
|
|
self.skipTest("Processor has no chat template")
|
|
|
|
signature = inspect.signature(processor.__call__)
|
|
if "videos" not in {*signature.parameters.keys()} or (
|
|
signature.parameters.get("videos") is not None
|
|
and signature.parameters["videos"].annotation == inspect._empty
|
|
):
|
|
self.skipTest("Processor doesn't accept videos at input")
|
|
|
|
video_file_path = hf_hub_download(
|
|
repo_id="raushan-testing-hf/videos-test", filename="sample_demo_1.mp4", repo_type="dataset"
|
|
)
|
|
messages = [
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "video", "path": video_file_path},
|
|
{"type": "text", "text": "What is shown in this video?"},
|
|
],
|
|
},
|
|
]
|
|
]
|
|
|
|
def _process_messages_for_chat_template(
|
|
conversation,
|
|
batch_images,
|
|
batch_videos,
|
|
batch_video_metadata,
|
|
**chat_template_kwargs,
|
|
):
|
|
# Let us just always return a dummy prompt
|
|
new_msg = [
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "video"}, # no need to use path, video is loaded already by this moment
|
|
{"type": "text", "text": "Dummy prompt for preprocess testing"},
|
|
],
|
|
},
|
|
]
|
|
]
|
|
return new_msg
|
|
|
|
processor._process_messages_for_chat_template = _process_messages_for_chat_template
|
|
out_dict_with_video = processor.apply_chat_template(
|
|
messages,
|
|
add_generation_prompt=True,
|
|
tokenize=True,
|
|
return_dict=True,
|
|
return_tensors="np",
|
|
)
|
|
self.assertTrue(self.videos_input_name in out_dict_with_video)
|
|
|
|
# Check with `in` because we don't know how each template formats the prompt with BOS/EOS/etc
|
|
formatted_text = processor.batch_decode(out_dict_with_video["input_ids"], skip_special_tokens=True)[0]
|
|
self.assertTrue("Dummy prompt for preprocess testing" in formatted_text)
|
|
# Difference with common tests, InternVLProcessor returns flattened video features, and uses 8 frames by default
|
|
self.assertEqual(len(out_dict_with_video[self.videos_input_name]), 8)
|
|
|
|
def test_apply_chat_template_video_frame_sampling(self):
|
|
processor = self.get_processor()
|
|
|
|
if processor.chat_template is None:
|
|
self.skipTest("Processor has no chat template")
|
|
|
|
signature = inspect.signature(processor.__call__)
|
|
if "videos" not in {*signature.parameters.keys()} or (
|
|
signature.parameters.get("videos") is not None
|
|
and signature.parameters["videos"].annotation == inspect._empty
|
|
):
|
|
self.skipTest("Processor doesn't accept videos at input")
|
|
|
|
messages = [
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "video",
|
|
"url": "https://test-videos.co.uk/vids/bigbuckbunny/mp4/h264/720/Big_Buck_Bunny_720_10s_10MB.mp4",
|
|
},
|
|
{"type": "text", "text": "What is shown in this video?"},
|
|
],
|
|
},
|
|
]
|
|
]
|
|
|
|
num_frames = 3
|
|
out_dict_with_video = processor.apply_chat_template(
|
|
messages,
|
|
add_generation_prompt=True,
|
|
tokenize=True,
|
|
return_dict=True,
|
|
num_frames=num_frames,
|
|
return_tensors="np",
|
|
)
|
|
self.assertTrue(self.videos_input_name in out_dict_with_video)
|
|
self.assertEqual(len(out_dict_with_video[self.videos_input_name]), num_frames)
|
|
|
|
# Load with `video_fps` arg
|
|
video_fps = 1
|
|
out_dict_with_video = processor.apply_chat_template(
|
|
messages,
|
|
add_generation_prompt=True,
|
|
tokenize=True,
|
|
return_dict=True,
|
|
video_fps=video_fps,
|
|
num_frames=None, # force to use default num_frames
|
|
return_tensors="np",
|
|
)
|
|
self.assertTrue(self.videos_input_name in out_dict_with_video)
|
|
self.assertEqual(len(out_dict_with_video[self.videos_input_name]), video_fps * 10)
|
|
|
|
# Load with `video_fps` and `num_frames` args, should raise an error
|
|
with self.assertRaises(ValueError):
|
|
out_dict_with_video = processor.apply_chat_template(
|
|
messages,
|
|
add_generation_prompt=True,
|
|
tokenize=True,
|
|
return_dict=True,
|
|
video_fps=video_fps,
|
|
num_frames=num_frames,
|
|
)
|
|
|
|
# Load without any arg should use the default loading method
|
|
out_dict_with_video = processor.apply_chat_template(
|
|
messages,
|
|
add_generation_prompt=True,
|
|
tokenize=True,
|
|
return_dict=True,
|
|
)
|
|
self.assertTrue(self.videos_input_name in out_dict_with_video)
|
|
# Difference with common tests, InternVLProcessor returns flattened video features, and uses 8 frames by default
|
|
self.assertEqual(len(out_dict_with_video[self.videos_input_name]), 8)
|
|
|
|
# Load video as a list of frames (i.e. images). NOTE: each frame should have same size
|
|
# because we assume they come from one video
|
|
messages[0][0]["content"][0] = {
|
|
"type": "video",
|
|
"url": [
|
|
"https://www.ilankelman.org/stopsigns/australia.jpg",
|
|
"https://www.ilankelman.org/stopsigns/australia.jpg",
|
|
],
|
|
}
|
|
out_dict_with_video = processor.apply_chat_template(
|
|
messages,
|
|
add_generation_prompt=True,
|
|
tokenize=True,
|
|
return_dict=True,
|
|
)
|
|
self.assertTrue(self.videos_input_name in out_dict_with_video)
|
|
self.assertEqual(len(out_dict_with_video[self.videos_input_name]), 2)
|