mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-20 04:58:22 +06:00

* Initial add model additions * Test * All weights loading * Can perform full forward pass * Local and remote the same * Matching local and remote * Fixup * Idefics2Model importable; fixup docstrings * Don't skip by default * Remove deprecated use_resampler arg * Remove self.config * DecoupledLinear takes config * Tidy up * Enable eager attention and tidy up * Most tests passing * Update for batch of processed images * Add image processor * Update doc pages * Update conversion script * Remove erroneous breakpoint * Remove accidendtal spelling change * Update to reflect changes on hub - make generate work * Fix up * Image processor tests * Update tests * Add a processor * Add a processor * Update convert script * Update modeling file - remove fixmes * Bug fix * Add processing test * Use processor * Fix up * Update src/transformers/models/idefics2/modeling_idefics2.py Co-authored-by: Victor SANH <victorsanh@gmail.com> * Update src/transformers/models/idefics2/modeling_idefics2.py Co-authored-by: Victor SANH <victorsanh@gmail.com> * Fix test * Update config - PR comments and defaults align with checkpoint * Reviewer comments * Add copied froms for flahs attention * Update src/transformers/models/idefics2/modeling_idefics2.py Co-authored-by: Victor SANH <victorsanh@gmail.com> * Apply suggestions from code review Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Remove qk_layer_norm and freeze_layers functionality * Fix * Remove freeze_layer options from config * Sync with upstream main * Fix attention shapes siglip * Remove Llava-next refs - TO REBASE * Use AutoModel for text model * Add comment to explain vision embeddings * Fix issue with tie_word_embeddings * Address review comments * Fix and fix up * Chat templates for idefics * Fix copies * Fix * Add layer norms to FA2 * Fix tests * Apply suggestions from code review Co-authored-by: Victor SANH <victorsanh@gmail.com> * Fix * Review comments * Update src/transformers/models/idefics2/modeling_idefics2.py Co-authored-by: Victor SANH <victorsanh@gmail.com> * Update inputs merger * Merge weights in correct order * Update convert script * Update src/transformers/models/idefics2/processing_idefics2.py Co-authored-by: Victor SANH <victorsanh@gmail.com> * Update template * Model code examples (fix idefics too) * More review comments * Tidy up * Update processing * Fix attention mask preparation * Update inputs_merger inputs * Vectorize inputs_merger * Update src/transformers/models/idefics2/__init__.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update src/transformers/models/idefics2/modeling_idefics2.py * Review comments * saying bye to the `qk_layer_norms` * Simplify * Update latents * Remove erroneuous readme changes * Return images when applying chat template * Fix bug - prompt images are for a single sample * Update src/transformers/models/idefics2/modeling_idefics2.py * image splitting * fix test * some more comment * some comment * Apply suggestions from code review Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Update src/transformers/models/idefics2/image_processing_idefics2.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Update processor * Update model tests * Update src/transformers/models/idefics2/processing_idefics2.py Co-authored-by: Victor SANH <victorsanh@gmail.com> * Update src/transformers/models/idefics2/processing_idefics2.py Co-authored-by: Victor SANH <victorsanh@gmail.com> * Don't add BOS in template * Update src/transformers/models/idefics2/processing_idefics2.py Co-authored-by: Victor SANH <victorsanh@gmail.com> * Remove index in examples * Update tests to reflect #13 * Update src/transformers/models/idefics2/processing_idefics2.py Co-authored-by: Victor SANH <victorsanh@gmail.com> * PR comment - consistent typing * Update readme and model doc * Update docs * Update checkpoint references * Update examples * Fix and update tests * Small addition * Update tests - remove copied from as no ignore placement copy could be found * Update example * small fixes * Update docs/source/en/model_doc/idefics2.md Co-authored-by: Victor SANH <victorsanh@gmail.com> * Update docs/source/en/model_doc/idefics2.md Co-authored-by: Victor SANH <victorsanh@gmail.com> * Update README.md Co-authored-by: Victor SANH <victorsanh@gmail.com> * Connector model as bridge * Fix up * Fix up * Don't pass model inputs for generation kwargs update * IDEFICS-2 -> Idefics2 * Remove config archive name * IDEFICS-2 -> Idefics2 * Add back llava-next * Update readmes * Add requirements for processor tester * Use custom convert_to_rgb to avoid possible BC * Fix doc example * Fix doc example * Skip model doc tests - as model to large * More doc example - account for image splitting * Update src/transformers/image_transforms.py * Fix config doctest --------- Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com> Co-authored-by: ArthurZucker <arthur.zucker@gmail.com> Co-authored-by: Victor SANH <victorsanh@gmail.com> Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
236 lines
11 KiB
Python
236 lines
11 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
from io import BytesIO
|
|
|
|
import requests
|
|
|
|
from transformers import Idefics2Processor
|
|
from transformers.testing_utils import require_torch, require_vision
|
|
from transformers.utils import is_vision_available
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class Idefics2ProcessorTest(unittest.TestCase):
|
|
def setUp(self):
|
|
self.processor = Idefics2Processor.from_pretrained("HuggingFaceM4/idefics2-8b", image_seq_len=2)
|
|
self.image1 = Image.open(
|
|
BytesIO(
|
|
requests.get(
|
|
"https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
|
|
).content
|
|
)
|
|
)
|
|
self.image2 = Image.open(
|
|
BytesIO(requests.get("https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg").content)
|
|
)
|
|
self.image3 = Image.open(
|
|
BytesIO(
|
|
requests.get(
|
|
"https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg"
|
|
).content
|
|
)
|
|
)
|
|
self.bos_token = self.processor.tokenizer.bos_token
|
|
self.image_token = self.processor.image_token.content
|
|
self.fake_image_token = self.processor.fake_image_token.content
|
|
|
|
self.bos_token_id = self.processor.tokenizer.convert_tokens_to_ids(self.bos_token)
|
|
self.image_token_id = self.processor.tokenizer.convert_tokens_to_ids(self.image_token)
|
|
self.fake_image_token_id = self.processor.tokenizer.convert_tokens_to_ids(self.fake_image_token)
|
|
self.image_seq_len = self.processor.image_seq_len
|
|
|
|
def test_process_interleaved_images_prompts_no_image_splitting(self):
|
|
old_image_splitting = self.processor.image_processor.do_image_splitting
|
|
|
|
self.processor.image_processor.do_image_splitting = False
|
|
|
|
# Test that a single image is processed correctly
|
|
inputs = self.processor(images=self.image1)
|
|
self.assertEqual(inputs["pixel_values"].shape, (1, 1, 3, 653, 980))
|
|
self.assertEqual(inputs["pixel_attention_mask"].shape, (1, 1, 653, 980))
|
|
# fmt: on
|
|
|
|
# Test a single sample with image and text
|
|
image_str = "<image>"
|
|
text_str = "In this image, we see"
|
|
text = image_str + text_str
|
|
inputs = self.processor(text=text, images=self.image1)
|
|
|
|
# fmt: off
|
|
tokenized_sentence = self.processor.tokenizer(text_str, add_special_tokens=False)
|
|
expected_input_ids = [[self.bos_token_id] + [self.fake_image_token_id] + [self.image_token_id] * self.image_seq_len + [self.fake_image_token_id] + tokenized_sentence["input_ids"]]
|
|
self.assertEqual(inputs["input_ids"], expected_input_ids)
|
|
self.assertEqual(inputs["attention_mask"], [[1] * len(expected_input_ids[0])])
|
|
self.assertEqual(inputs["pixel_values"].shape, (1, 1, 3, 653, 980))
|
|
self.assertEqual(inputs["pixel_attention_mask"].shape, (1, 1, 653, 980))
|
|
# fmt: on
|
|
|
|
# Test that batch is correctly processed
|
|
image_str = "<image>"
|
|
text_str_1 = "In this image, we see"
|
|
text_str_2 = "bla, bla"
|
|
|
|
text = [
|
|
image_str + text_str_1,
|
|
text_str_2 + image_str + image_str,
|
|
]
|
|
images = [[self.image1], [self.image2, self.image3]]
|
|
|
|
inputs = self.processor(text=text, images=images, padding=True)
|
|
|
|
# fmt: off
|
|
tokenized_sentence_1 = self.processor.tokenizer(text_str_1, add_special_tokens=False)
|
|
tokenized_sentence_2 = self.processor.tokenizer(text_str_2, add_special_tokens=False)
|
|
expected_input_ids_1 = [self.bos_token_id] + [self.fake_image_token_id] + [self.image_token_id] * self.image_seq_len + [self.fake_image_token_id] + tokenized_sentence_1["input_ids"]
|
|
expected_input_ids_2 = [self.bos_token_id] + tokenized_sentence_2["input_ids"] + [self.fake_image_token_id] + [self.image_token_id] * self.image_seq_len + [self.fake_image_token_id] + [self.image_token_id] * self.image_seq_len + [self.fake_image_token_id]
|
|
# Pad the first input to match the second input
|
|
pad_len = len(expected_input_ids_2) - len(expected_input_ids_1)
|
|
padded_expected_input_ids_1 = [0] * pad_len + expected_input_ids_1
|
|
|
|
self.assertEqual(
|
|
inputs["input_ids"], [padded_expected_input_ids_1, expected_input_ids_2]
|
|
)
|
|
self.assertEqual(
|
|
inputs["attention_mask"],
|
|
[[0] * pad_len + [1] * len(expected_input_ids_1), [1] * len(expected_input_ids_2)]
|
|
)
|
|
self.assertEqual(inputs['pixel_values'].shape, (2, 2, 3, 767, 980))
|
|
self.assertEqual(inputs['pixel_attention_mask'].shape, (2, 2, 767, 980))
|
|
# fmt: on
|
|
|
|
self.processor.image_processor.do_image_splitting = old_image_splitting
|
|
|
|
def test_process_interleaved_images_prompts_image_splitting(self):
|
|
old_image_splitting = self.processor.image_processor.do_image_splitting
|
|
|
|
self.processor.image_processor.do_image_splitting = True
|
|
|
|
# Test that a single image is processed correctly
|
|
inputs = self.processor(images=self.image1)
|
|
self.assertEqual(inputs["pixel_values"].shape, (1, 5, 3, 653, 980))
|
|
self.assertEqual(inputs["pixel_attention_mask"].shape, (1, 5, 653, 980))
|
|
# fmt: on
|
|
|
|
# Test a single sample with image and text
|
|
image_str = "<image>"
|
|
text_str = "In this image, we see"
|
|
text = image_str + text_str
|
|
inputs = self.processor(text=text, images=self.image1)
|
|
|
|
# fmt: off
|
|
tokenized_sentence = self.processor.tokenizer(text_str, add_special_tokens=False)
|
|
expected_input_ids = [[self.bos_token_id] + ([self.fake_image_token_id] + [self.image_token_id] * self.image_seq_len) * 5 + [self.fake_image_token_id] + tokenized_sentence["input_ids"]]
|
|
self.assertEqual(inputs["input_ids"], expected_input_ids)
|
|
self.assertEqual(inputs["attention_mask"], [[1] * len(expected_input_ids[0])])
|
|
self.assertEqual(inputs["pixel_values"].shape, (1, 5, 3, 653, 980))
|
|
self.assertEqual(inputs["pixel_attention_mask"].shape, (1, 5, 653, 980))
|
|
# fmt: on
|
|
|
|
# Test that batch is correctly processed
|
|
image_str = "<image>"
|
|
text_str_1 = "In this image, we see"
|
|
text_str_2 = "bla, bla"
|
|
|
|
text = [
|
|
image_str + text_str_1,
|
|
text_str_2 + image_str + image_str,
|
|
]
|
|
images = [[self.image1], [self.image2, self.image3]]
|
|
|
|
inputs = self.processor(text=text, images=images, padding=True)
|
|
|
|
# fmt: off
|
|
tokenized_sentence_1 = self.processor.tokenizer(text_str_1, add_special_tokens=False)
|
|
tokenized_sentence_2 = self.processor.tokenizer(text_str_2, add_special_tokens=False)
|
|
expected_input_ids_1 = [self.bos_token_id] + ([self.fake_image_token_id] + [self.image_token_id] * self.image_seq_len) * 5 + [self.fake_image_token_id] + tokenized_sentence_1["input_ids"]
|
|
expected_input_ids_2 = [self.bos_token_id] + tokenized_sentence_2["input_ids"] + ([self.fake_image_token_id] + [self.image_token_id] * self.image_seq_len) * 5 + ([self.fake_image_token_id] + [self.image_token_id] * self.image_seq_len) * 5 + [self.fake_image_token_id]
|
|
# Pad the first input to match the second input
|
|
pad_len = len(expected_input_ids_2) - len(expected_input_ids_1)
|
|
padded_expected_input_ids_1 = [0] * pad_len + expected_input_ids_1
|
|
|
|
self.assertEqual(
|
|
inputs["input_ids"], [padded_expected_input_ids_1, expected_input_ids_2]
|
|
)
|
|
self.assertEqual(
|
|
inputs["attention_mask"],
|
|
[[0] * pad_len + [1] * len(expected_input_ids_1), [1] * len(expected_input_ids_2)]
|
|
)
|
|
self.assertEqual(inputs['pixel_values'].shape, (2, 10, 3, 767, 980))
|
|
self.assertEqual(inputs['pixel_attention_mask'].shape, (2, 10, 767, 980))
|
|
# fmt: on
|
|
|
|
self.processor.image_processor.do_image_splitting = old_image_splitting
|
|
|
|
def test_add_special_tokens_processor(self):
|
|
image_str = "<image>"
|
|
text_str = "In this image, we see"
|
|
text = text_str + image_str
|
|
|
|
n_image_repeat = 5 if self.processor.image_processor.do_image_splitting else 1
|
|
|
|
# fmt: off
|
|
inputs = self.processor(text=text, images=self.image1, add_special_tokens=False)
|
|
tokenized_sentence = self.processor.tokenizer(text_str, add_special_tokens=False)
|
|
expected_input_ids = [tokenized_sentence["input_ids"] + ([self.fake_image_token_id] + [self.image_token_id] * self.image_seq_len) * n_image_repeat + [self.fake_image_token_id]]
|
|
self.assertEqual(inputs["input_ids"], expected_input_ids)
|
|
|
|
inputs = self.processor(text=text, images=self.image1)
|
|
expected_input_ids = [[self.bos_token_id] + tokenized_sentence["input_ids"] + ([self.fake_image_token_id] + [self.image_token_id] * self.image_seq_len) * n_image_repeat + [self.fake_image_token_id]]
|
|
self.assertEqual(inputs["input_ids"], expected_input_ids)
|
|
# fmt: on
|
|
|
|
def test_apply_chat_template(self):
|
|
# Message contains content which a mix of lists with images and image urls and string
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": "What do these images show?"},
|
|
{"type": "image"},
|
|
{"type": "image"},
|
|
"What do these images show?",
|
|
],
|
|
},
|
|
{
|
|
"role": "assistant",
|
|
"content": [
|
|
{
|
|
"type": "text",
|
|
"text": "The first image shows the statue of Liberty in New York. The second image picture depicts Idefix, the dog of Obelix in Asterix and Obelix.",
|
|
}
|
|
],
|
|
},
|
|
{"role": "user", "content": [{"type": "text", "text": "And who is that?"}]},
|
|
]
|
|
|
|
processor = self.processor
|
|
# Make short sequence length to test that the fake tokens are added correctly
|
|
rendered = processor.apply_chat_template(messages, add_generation_prompt=True)
|
|
|
|
expected_rendered = (
|
|
"User: What do these images show?<image><image><end_of_utterance>\n"
|
|
"Assistant: The first image shows the statue of Liberty in New York. The second image picture depicts Idefix, the dog of Obelix in Asterix and Obelix.<end_of_utterance>\n"
|
|
"User: And who is that?<end_of_utterance>\n"
|
|
"Assistant:"
|
|
)
|
|
self.assertEqual(rendered, expected_rendered)
|