mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-20 13:08:21 +06:00

* remove references to old API in docstring - update data processors * style * fix tests - better type checking error messages * better type checking * include awesome fix by @LysandreJik for #5310 * updated doc and examples
89 lines
3.4 KiB
Python
89 lines
3.4 KiB
Python
import argparse
|
|
import json
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
from tqdm import tqdm
|
|
|
|
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
|
|
|
|
|
try:
|
|
from .utils import calculate_rouge, use_task_specific_params, calculate_bleu_score
|
|
except ImportError:
|
|
from utils import calculate_rouge, use_task_specific_params, calculate_bleu_score
|
|
|
|
DEFAULT_DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
def chunks(lst, n):
|
|
"""Yield successive n-sized chunks from lst."""
|
|
for i in range(0, len(lst), n):
|
|
yield lst[i : i + n]
|
|
|
|
|
|
def generate_summaries_or_translations(
|
|
examples: list,
|
|
out_file: str,
|
|
model_name: str,
|
|
batch_size: int = 8,
|
|
device: str = DEFAULT_DEVICE,
|
|
fp16=False,
|
|
**gen_kwargs,
|
|
) -> None:
|
|
fout = Path(out_file).open("w", encoding="utf-8")
|
|
model_name = str(model_name)
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device)
|
|
if fp16:
|
|
model = model.half()
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
# update config with summarization specific params
|
|
use_task_specific_params(model, "summarization")
|
|
|
|
for batch in tqdm(list(chunks(examples, batch_size))):
|
|
if "t5" in model_name:
|
|
batch = [model.config.prefix + text for text in batch]
|
|
batch = tokenizer(batch, max_length=1024, return_tensors="pt", truncation=True, padding="max_length").to(
|
|
device
|
|
)
|
|
summaries = model.generate(**batch, **gen_kwargs)
|
|
dec = tokenizer.batch_decode(summaries, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
|
for hypothesis in dec:
|
|
fout.write(hypothesis + "\n")
|
|
fout.flush()
|
|
|
|
|
|
def run_generate():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("input_path", type=str, help="like cnn_dm/test.source")
|
|
parser.add_argument("output_path", type=str, help="where to save summaries")
|
|
parser.add_argument("model_name", type=str, help="like facebook/bart-large-cnn,t5-base, etc.")
|
|
parser.add_argument("--reference_path", type=str, required=False, help="like cnn_dm/test_reference_summaries.txt")
|
|
parser.add_argument("--score_path", type=str, required=False, help="where to save the rouge score in json format")
|
|
parser.add_argument("--metric", type=str, choices=["bleu", "rouge"], default="rouge")
|
|
parser.add_argument("--device", type=str, required=False, default=DEFAULT_DEVICE, help="cuda, cuda:1, cpu etc.")
|
|
parser.add_argument("--bs", type=int, default=8, required=False, help="batch size")
|
|
parser.add_argument("--fp16", action="store_true")
|
|
args = parser.parse_args()
|
|
examples = [" " + x.rstrip() if "t5" in args.model_name else x.rstrip() for x in open(args.input_path).readlines()]
|
|
|
|
generate_summaries_or_translations(
|
|
examples, args.output_path, args.model_name, batch_size=args.bs, device=args.device, fp16=args.fp16
|
|
)
|
|
|
|
output_lns = [x.rstrip() for x in open(args.output_path).readlines()]
|
|
scores = {}
|
|
if args.reference_path is not None:
|
|
score_fn = {"bleu": calculate_bleu_score, "rouge": calculate_rouge}[args.metric]
|
|
reference_lns = [x.rstrip() for x in open(args.reference_path).readlines()]
|
|
scores: dict = score_fn(output_lns, reference_lns)
|
|
if args.score_path is not None:
|
|
json.dump(scores, open("score_path", "w+"))
|
|
return scores
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_generate()
|