5.2 KiB
MarianMT
Overview
MarianMT is a machine translation model trained with the Marian framework which is written in pure C++. The framework includes its own custom auto-differentiation engine and efficient meta-algorithms to train encoder-decoder models like BART.
All MarianMT models are transformer encoder-decoders with 6 layers in each component, use static sinusoidal positional embeddings, don't have a layernorm embedding, and the model starts generating with the prefix pad_token_id
instead of <s/>
.
You can find all the original MarianMT checkpoints under the Language Technology Research Group at the University of Helsinki organization.
Tip
This model was contributed by sshleifer.
Click on the MarianMT models in the right sidebar for more examples of how to apply MarianMT to translation tasks.
The example below demonstrates how to translate text using [Pipeline
] or the [AutoModel
] class.
import torch
from transformers import pipeline
pipeline = pipeline("translation_en_to_de", model="Helsinki-NLP/opus-mt-en-de", torch_dtype=torch.float16, device=0)
pipeline("Hello, how are you?")
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de")
model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-de", torch_dtype=torch.float16, attn_implementation="sdpa", device_map="auto")
inputs = tokenizer("Hello, how are you?", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, cache_implementation="static")
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Use the AttentionMaskVisualizer to better understand what tokens the model can and cannot attend to.
from transformers.utils.attention_visualizer import AttentionMaskVisualizer
visualizer = AttentionMaskVisualizer("Helsinki-NLP/opus-mt-en-de")
visualizer("Hello, how are you?")
Notes
-
MarianMT models are ~298MB on disk and there are more than 1000 models. Check this list for supported language pairs. The language codes may be inconsistent. Two digit codes can be found here while three digit codes may require further searching.
-
Models that require BPE preprocessing are not supported.
-
All model names use the following format:
Helsinki-NLP/opus-mt-{src}-{tgt}
. Language codes formatted likees_AR
usually refer to thecode_{region}
. For example,es_AR
refers to Spanish from Argentina. -
If a model can output multiple languages, prepend the desired output language to
src_txt
as shown below. New multilingual models from the Tatoeba-Challenge require 3 character language codes.add code snippet here
-
Older multilingual models use 2 character language codes.
add code snippet here
MarianConfig
autodoc MarianConfig
MarianTokenizer
autodoc MarianTokenizer - build_inputs_with_special_tokens
MarianModel
autodoc MarianModel - forward
MarianMTModel
autodoc MarianMTModel - forward
MarianForCausalLM
autodoc MarianForCausalLM - forward
TFMarianModel
autodoc TFMarianModel - call
TFMarianMTModel
autodoc TFMarianMTModel - call
FlaxMarianModel
autodoc FlaxMarianModel - call
FlaxMarianMTModel
autodoc FlaxMarianMTModel - call