transformers/tests/generation/test_logits_process.py
Jaeyong Sung 583db52bc6
Add Dia model (#38405)
* add dia model

* add tokenizer files

* cleanup some stuff

* brut copy paste code

* rough cleanup of the modeling code

* nuke some stuff

* more nuking

* more cleanups

* updates

* add mulitLayerEmbedding vectorization

* nits

* more modeling simplifications

* updates

* update rope

* update rope

* just fixup

* update configuration files

* more cleanup!

* default config values

* update

* forgotten comma

* another comma!

* update, more cleanups

* just more nits

* more config cleanups

* time for the encoder

* fix

* sa=mall nit

* nits

* n

* refacto a bit

* cleanup

* update cv scipt

* fix last issues

* fix last nits

* styling

* small fixes

* just run 1 generation

* fixes

* nits

* fix conversion

* fix

* more fixes

* full generate

* ouf!

* fixes!

* updates

* fix

* fix cvrt

* fixup

* nits

* delete wrong test

* update

* update

* test tokenization

* let's start changing things bit by bit - fix encoder step

* removing custom generation, moving to GenerationMixin

* add encoder decoder attention masks for generation

* mask changes, correctness checked against ad29837 in dia repo

* refactor a bit already --> next cache

* too important not to push :)

* minimal cleanup + more todos

* make main overwrite modeling utils

* add cfg filter & eos filter

* add eos countdown & delay pattern

* update eos countdown

* add max step eos countdown

* fix tests

* fix some things

* fix generation with testing

* move cfg & eos stuff to logits processor

* make RepetitionPenaltyLogitsProcessor flexible

- can accept 3D scores like (batch_size, channel, vocab)

* fix input_ids concatenation dimension in GenerationMixin for flexibility

* Add DiaHangoverLogitsProcessor and DiaExponentialDecayLengthPenalty classes; refactor logits processing in DiaForConditionalGeneration to utilize new configurations and improve flexibility.

* Add stopping criteria

* refactor

* move delay pattern from processor to modeling like musicgen.

- add docs
- change eos countdown to eos delay pattern

* fix processor & fix tests

* refactor types

* refactor imports

* format code

* fix docstring to pass ci

* add docstring to DiaConfig & add DiaModel to test

* fix docstring

* add docstring

* fix some bugs

* check

* porting / merging results from other branch - IMPORTANT: it very likely breaks generation, the goal is to have a proper forward path first

* experimental testing of left padding for first channel

* whoops

* Fix merge to make generation work

* fix cfg filter

* add position ids

* add todos, break things

* revert changes to generation --> we will force 2d but go 3d on custom stuff

* refactor a lot, change prepare decoder ids to work with left padding (needs testing), add todos

* some first fixes to get to 10. in generation

* some more generation fixes / adjustment

* style + rope fixes

* move cfg out, simplify a few things, more todos

* nit

* start working on custom logit processors

* nit

* quick fixes

* cfg top k

* more refactor of logits processing, needs a decision if gen config gets the new attributes or if we move it to config or similar

* lets keep changes to core code minimal, only eos scaling is questionable atm

* simpler eos delay logits processor

* that was for debugging :D

* proof of concept rope

* small fix on device mismatch

* cfg fixes + delay logits max len

* transformers rope

* modular dia

* more cleanup

* keep modeling consistently 3D, generate handles 2D internally

* decoder starts with bos if nothing

* post processing prototype

* style

* lol

* force sample / greedy + fixes on padding

* style

* fixup tokenization

* nits

* revert

* start working on dia tests

* fix a lot of tests

* more test fixes

* nit

* more test fixes + some features to simplify code more

* more cleanup

* forgot that one

* autodocs

* small consistency fixes

* fix regression

* small fixes

* dia feature extraction

* docs

* wip processor

* fix processor order

* processing goes brrr

* transpose before

* small fix

* fix major bug but needs now a closer look into the custom processors esp cfg

* small thing on logits

* nits

* simplify indices and shifts

* add simpler version of padding tests back (temporarily)

* add logit processor tests

* starting tests on processor

* fix mask application during generation

* some fixes on the weights conversion

* style + fixup logits order

* simplify conversion

* nit

* remove padding tests

* nits on modeling

* hmm

* fix tests

* trigger

* probably gonna be reverted, just a quick design around audio tokenizer

* fixup typing

* post merge + more typing

* initial design for audio tokenizer

* more design changes

* nit

* more processor tests and style related things

* add to init

* protect import

* not sure why tbh

* add another protect

* more fixes

* wow

* it aint stopping :D

* another missed type issue

* ...

* change design around audio tokenizer to prioritize init and go for auto - in regards to the review

* change to new causal mask function + docstrings

* change ternary

* docs

* remove todo, i dont think its essential tbh

* remove pipeline as current pipelines do not fit in the current scheme, same as csm

* closer to wrapping up the processor

* text to audio, just for demo purposes (will likely be reverted)

* check if it's this

* save audio function

* ensure no grad

* fixes on prefixed audio, hop length is used via preprocess dac, device fixes

* integration tests (tested locally on a100) + some processor utils / fixes

* style

* nits

* another round of smaller things

* docs + some fixes (generate one might be big)

* msytery solved

* small fix on conversion

* add abstract audio tokenizer, change init check to abstract class

* nits

* update docs + fix some processing :D

* change inheritance scheme for audio tokenizer

* delete dead / unnecessary code in copied generate loop

* last nits on new pipeline behavior (+ todo on tests) + style

* trigger

---------

Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Vasqu <antonprogamer@gmail.com>
2025-06-26 11:04:23 +00:00

1361 lines
57 KiB
Python

# Copyright 2020 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from typing import Union
import numpy as np
from parameterized import parameterized
from transformers import is_torch_available
from transformers.testing_utils import require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from torch import nn
from transformers.generation import (
EncoderNoRepeatNGramLogitsProcessor,
EncoderRepetitionPenaltyLogitsProcessor,
EpsilonLogitsWarper,
EtaLogitsWarper,
ExponentialDecayLengthPenalty,
ForcedBOSTokenLogitsProcessor,
ForcedEOSTokenLogitsProcessor,
HammingDiversityLogitsProcessor,
InfNanRemoveLogitsProcessor,
LogitNormalization,
LogitsProcessorList,
MinLengthLogitsProcessor,
MinNewTokensLengthLogitsProcessor,
MinPLogitsWarper,
NoBadWordsLogitsProcessor,
NoRepeatNGramLogitsProcessor,
PrefixConstrainedLogitsProcessor,
RepetitionPenaltyLogitsProcessor,
SequenceBiasLogitsProcessor,
SynthIDTextWatermarkLogitsProcessor,
TemperatureLogitsWarper,
TopKLogitsWarper,
TopPLogitsWarper,
TypicalLogitsWarper,
UnbatchedClassifierFreeGuidanceLogitsProcessor,
WatermarkLogitsProcessor,
)
from transformers.generation.logits_process import (
BarkEosPrioritizerLogitsProcessor,
DiaClassifierFreeGuidanceLogitsProcessor,
DiaEOSChannelFilterLogitsProcessor,
DiaEOSDelayPatternLogitsProcessor,
)
@require_torch
class LogitsProcessorTest(unittest.TestCase):
def _get_uniform_logits(self, batch_size: int, length: int):
scores = torch.ones((batch_size, length), device=torch_device, dtype=torch.float) / length
return scores
def test_min_length_dist_processor(self):
vocab_size = 20
batch_size = 4
eos_token_id = 0
min_dist_processor = MinLengthLogitsProcessor(min_length=10, eos_token_id=eos_token_id, device=torch_device)
# check that min length is applied at length 5
input_ids = ids_tensor((batch_size, 5), vocab_size=20)
scores = self._get_uniform_logits(batch_size, vocab_size)
scores_before_min_length = min_dist_processor(input_ids, scores)
self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist(), 4 * [-float("inf")])
# check that min length is not applied anymore at length 15
input_ids = ids_tensor((batch_size, 15), vocab_size=20)
scores = self._get_uniform_logits(batch_size, vocab_size)
scores_before_min_length = min_dist_processor(input_ids, scores)
self.assertFalse(torch.isinf(scores_before_min_length).any())
@parameterized.expand([(0,), ([0, 18],)])
def test_new_min_length_dist_processor(self, eos_token_id: Union[int, list[int]]):
vocab_size = 20
batch_size = 4
# check that first input is skipped (min new length applying)
input_ids = ids_tensor((batch_size, 5), vocab_size=20)
new_min_dist_processor = MinNewTokensLengthLogitsProcessor(
prompt_length_to_skip=input_ids.shape[-1], min_new_tokens=3, eos_token_id=eos_token_id, device=torch_device
)
expected_eos_scores_before_min_length = batch_size * [-float("inf")]
if isinstance(eos_token_id, list):
expected_eos_scores_before_min_length *= len(eos_token_id)
scores = self._get_uniform_logits(batch_size, vocab_size)
scores_before_min_length = new_min_dist_processor(input_ids, scores)
self.assertListEqual(
scores_before_min_length[:, eos_token_id].flatten().tolist(), expected_eos_scores_before_min_length
)
# check that, for skipping, now prompt length is 5, after that we expect first 5 tokens will be skipped
self.assertTrue(new_min_dist_processor.prompt_length_to_skip == 5)
# check that min length is applied at length 2
input_ids = ids_tensor((batch_size, 2), vocab_size=20)
scores = self._get_uniform_logits(batch_size, vocab_size)
scores_before_min_length = new_min_dist_processor(input_ids, scores)
self.assertListEqual(
scores_before_min_length[:, eos_token_id].flatten().tolist(), expected_eos_scores_before_min_length
)
# check that min new length is applied at length 6 (because it has only 1 new token)
input_ids = ids_tensor((batch_size, 6), vocab_size=20)
scores = self._get_uniform_logits(batch_size, vocab_size)
scores_before_min_length = new_min_dist_processor(input_ids, scores)
self.assertListEqual(
scores_before_min_length[:, eos_token_id].flatten().tolist(), expected_eos_scores_before_min_length
)
# check that min new length is applied at length 7 (because it has only 2 new tokens)
input_ids = ids_tensor((batch_size, 7), vocab_size=20)
scores = self._get_uniform_logits(batch_size, vocab_size)
scores_before_min_length = new_min_dist_processor(input_ids, scores)
self.assertListEqual(
scores_before_min_length[:, eos_token_id].flatten().tolist(), expected_eos_scores_before_min_length
)
# check that min new length is not applied anymore at length 8
input_ids = ids_tensor((batch_size, 8), vocab_size=20)
scores = self._get_uniform_logits(batch_size, vocab_size)
scores_before_min_length = new_min_dist_processor(input_ids, scores)
self.assertFalse(torch.isinf(scores_before_min_length).any())
# check that min new length is not applied anymore at length 15
input_ids = ids_tensor((batch_size, 15), vocab_size=20)
scores = self._get_uniform_logits(batch_size, vocab_size)
scores_before_min_length = new_min_dist_processor(input_ids, scores)
self.assertFalse(torch.isinf(scores_before_min_length).any())
def test_temperature_dist_warper(self):
input_ids = None
length = 20
scores = self._get_uniform_logits(batch_size=2, length=length)
# tweak scores to not be uniform anymore
scores[1, 5] = (1 / length) + 0.1 # peak, 1st batch
scores[1, 10] = (1 / length) - 0.4 # valley, 1st batch
# compute softmax
probs = nn.functional.softmax(scores, dim=-1)
temp_dist_warper_sharper = TemperatureLogitsWarper(temperature=0.5)
temp_dist_warper_smoother = TemperatureLogitsWarper(temperature=1.3)
warped_prob_sharp = nn.functional.softmax(temp_dist_warper_sharper(input_ids, scores), dim=-1)
warped_prob_smooth = nn.functional.softmax(temp_dist_warper_smoother(input_ids, scores), dim=-1)
processed_scores = temp_dist_warper_smoother(input_ids, scores)
# uniform distribution stays uniform
torch.testing.assert_close(probs[0, :], warped_prob_sharp[0, :], rtol=1e-3, atol=1e-3)
torch.testing.assert_close(probs[0, :], warped_prob_smooth[0, :], rtol=1e-3, atol=1e-3)
# sharp peaks get higher, valleys get lower
self.assertLess(probs[1, :].max(), warped_prob_sharp[1, :].max())
self.assertGreater(probs[1, :].min(), warped_prob_sharp[1, :].min())
# smooth peaks get lower, valleys get higher
self.assertGreater(probs[1, :].max(), warped_prob_smooth[1, :].max())
self.assertLess(probs[1, :].min(), warped_prob_smooth[1, :].min())
# processor should not change logits in-place
self.assertFalse(torch.all(scores == processed_scores))
def test_repetition_penalty_dist_process(self):
input_ids = torch.tensor([[0, 1], [5, 0]], device=torch_device, dtype=torch.long)
vocab_size = 10
scores = self._get_uniform_logits(batch_size=2, length=vocab_size)
# give values special values
scores[0, 0] = -(1 / vocab_size)
scores[1, 5] = 4 / vocab_size
rep_penalty_proc = RepetitionPenaltyLogitsProcessor(penalty=2.0)
processed_scores = rep_penalty_proc(input_ids, scores)
# check that values were correctly changed
self.assertAlmostEqual(processed_scores[0, 0].item(), -(1 / vocab_size) * 2)
self.assertAlmostEqual(processed_scores[0, 1].item(), (1 / vocab_size) / 2)
self.assertAlmostEqual(processed_scores[1, 0].item(), (1 / vocab_size) / 2)
self.assertAlmostEqual(processed_scores[1, 5].item(), (4 / vocab_size) / 2)
# processor should not change logits in-place
self.assertFalse(torch.all(scores == processed_scores))
def test_repetition_penalty_dist_process_exclusion_no_new_input_ids(self):
input_ids = torch.tensor([[0, 1], [5, 0]], device=torch_device, dtype=torch.long)
vocab_size = 10
scores = self._get_uniform_logits(batch_size=2, length=vocab_size)
# give values special values
scores[0, 0] = -(1 / vocab_size)
scores[1, 5] = 4 / vocab_size
rep_penalty_proc = RepetitionPenaltyLogitsProcessor(
penalty=2.0,
prompt_ignore_length=input_ids.shape[-1],
)
processed_scores = rep_penalty_proc(input_ids, scores)
# Because input IDs were provided & we call with the same input
# IDs that we initialize with, it should be the same as calling
# with no input IDs, so no scores should be penalized.
self.assertTrue(torch.all(scores == processed_scores))
def test_repetition_penalty_dist_process_exclusion_with_new_input_ids(self):
orig_input_ids = torch.tensor([[0, 1], [5, 0]], device=torch_device, dtype=torch.long)
curr_input_ids = torch.tensor([[0, 1, 0, 1], [5, 0, 5, 0]], device=torch_device, dtype=torch.long)
vocab_size = 10
scores = self._get_uniform_logits(batch_size=2, length=vocab_size)
# give values special values
scores[0, 0] = -(1 / vocab_size)
scores[1, 5] = 4 / vocab_size
rep_penalty_proc = RepetitionPenaltyLogitsProcessor(
penalty=2.0,
prompt_ignore_length=orig_input_ids.shape[-1],
)
processed_scores = rep_penalty_proc(curr_input_ids, scores)
# check that values were correctly changed
self.assertAlmostEqual(processed_scores[0, 0].item(), -(1 / vocab_size) * 2)
self.assertAlmostEqual(processed_scores[0, 1].item(), (1 / vocab_size) / 2)
self.assertAlmostEqual(processed_scores[1, 0].item(), (1 / vocab_size) / 2)
self.assertAlmostEqual(processed_scores[1, 5].item(), (4 / vocab_size) / 2)
# processor should not change logits in-place
self.assertFalse(torch.all(scores == processed_scores))
def test_encoder_repetition_penalty_dist_process(self):
input_ids = torch.tensor([[0, 1], [5, 0]], device=torch_device, dtype=torch.long)
vocab_size = 10
scores = self._get_uniform_logits(batch_size=2, length=vocab_size)
# give values special values
scores[0, 0] = -(1 / vocab_size)
scores[1, 5] = 4 / vocab_size
rep_penalty_proc = EncoderRepetitionPenaltyLogitsProcessor(penalty=2.0, encoder_input_ids=input_ids)
processed_scores = rep_penalty_proc(input_ids, scores)
# check that values were correctly changed
self.assertAlmostEqual(processed_scores[0, 0].item(), -(1 / vocab_size) / 2)
self.assertAlmostEqual(processed_scores[0, 1].item(), (1 / vocab_size) * 2)
self.assertAlmostEqual(processed_scores[1, 0].item(), (1 / vocab_size) * 2)
self.assertAlmostEqual(processed_scores[1, 5].item(), (4 / vocab_size) * 2)
# check that values not in the encoder ids were NOT changed
self.assertAlmostEqual(processed_scores[0, 2].item(), (1 / vocab_size))
self.assertAlmostEqual(processed_scores[1, 2].item(), (1 / vocab_size))
# processor should not change logits in-place
self.assertFalse(torch.all(scores == processed_scores))
def test_top_k_dist_warper(self):
input_ids = None
vocab_size = 10
batch_size = 2
# create ramp distribution
ramp_logits = (
torch.arange(vocab_size, device=torch_device, dtype=torch.float).unsqueeze(0).repeat(batch_size, 1)
)
ramp_logits[1:, : vocab_size // 2] = ramp_logits[1:, : vocab_size // 2] + vocab_size
top_k_warp = TopKLogitsWarper(3)
scores = top_k_warp(input_ids, ramp_logits)
# check that correct tokens are filtered
self.assertListEqual(torch.isinf(scores[0]).tolist(), 7 * [True] + 3 * [False])
self.assertListEqual(torch.isinf(scores[1]).tolist(), 2 * [True] + 3 * [False] + 5 * [True])
# processor should not change logits in-place
self.assertFalse(torch.all(scores == ramp_logits))
# check special cases
length = 5
logits = self._get_uniform_logits(batch_size=batch_size, length=length)
top_k_warp_safety_check = TopKLogitsWarper(top_k=1, filter_value=0.0, min_tokens_to_keep=3)
scores = top_k_warp_safety_check(input_ids, logits)
# uniform dist is not changed
self.assertListEqual((scores == 0.0).to(torch.long).sum(dim=-1).tolist(), [0, 0])
ramp_logits = torch.arange(length, device=torch_device, dtype=torch.float).unsqueeze(0).repeat(batch_size, 1)
scores = top_k_warp_safety_check(input_ids, ramp_logits)
# min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified
self.assertListEqual((scores == 0.0).to(torch.long).sum(dim=-1).tolist(), [2, 2])
def test_top_p_dist_warper(self):
input_ids = None
vocab_size = 10
batch_size = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
dist = torch.log(
torch.tensor([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]], device=torch_device, dtype=torch.float)
)
top_p_warp = TopPLogitsWarper(0.8)
filtered_dist = torch.exp(top_p_warp(input_ids, dist))
# dist should be filtered to keep min num values so that sum is >= top_p
# exp (-inf) => 0
EXPECTED_FILTERED_DIST = torch.tensor(
[[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]], device=torch_device, dtype=torch.float
)
torch.testing.assert_close(filtered_dist, EXPECTED_FILTERED_DIST, rtol=1e-3, atol=1e-3)
# processor should not change logits in-place
self.assertFalse(torch.all(top_p_warp(input_ids, dist) == dist))
# check edge cases with negative and extreme logits
ramp_logits = torch.arange(vocab_size, device=torch_device, dtype=torch.float).unsqueeze(0).repeat(
batch_size, 1
) - (vocab_size // 2)
# make ramp_logits more extreme
ramp_logits[1] = ramp_logits[1] * 100.0
# make sure at least 2 tokens are kept
top_p_warp = TopPLogitsWarper(0.9, min_tokens_to_keep=2, filter_value=0.0)
filtered_dist = top_p_warp(input_ids, ramp_logits)
# first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).to(torch.long).sum(dim=-1).tolist(), [3, 2])
def test_min_p_dist_warper(self):
input_ids = None
vocab_size = 10
batch_size = 2
# create distribution and take log (inverse to Softmax as taken in MinPLogitsWarper)
dist = torch.log(
torch.tensor(
[
[0.9, 0.0274, 0.047, 0.0274], # two tokens should be kept (0.047 > 0.9*0.05=0.045)
[0.15, 0.3, 0.3, 0.25], # all should be kept -- no high-probability token
[0.97, 0.01, 0.01, 0.01], # only the first token should be kept
],
device=torch_device,
dtype=torch.float,
)
)
min_p_warp = MinPLogitsWarper(0.05)
filtered_dist = torch.exp(min_p_warp(input_ids, dist))
# exp (-inf) => 0
EXPECTED_FILTERED_DIST = torch.tensor(
[[0.9, 0.0, 0.047, 0.0], [0.15, 0.3, 0.3, 0.25], [0.97, 0.0, 0.0, 0.0]],
device=torch_device,
dtype=torch.float,
)
torch.testing.assert_close(filtered_dist, EXPECTED_FILTERED_DIST, rtol=1e-3, atol=1e-3)
# processor should not change logits in-place
self.assertFalse(torch.all(min_p_warp(input_ids, dist) == dist))
# check edge cases with negative and extreme logits
ramp_logits = torch.arange(vocab_size, device=torch_device, dtype=torch.float) - (vocab_size // 2)
ramp_logits = ramp_logits.unsqueeze(0).repeat(batch_size, 1)
# make ramp_logits more extreme
ramp_logits[1] = ramp_logits[1] * 100.0
# make sure at least 2 tokens are kept
min_p_warp = MinPLogitsWarper(0.9, min_tokens_to_keep=2, filter_value=0.0)
filtered_dist = min_p_warp(input_ids, ramp_logits)
# first batch should keep two tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).to(torch.long).sum(dim=-1).tolist(), [2, 2])
def test_typical_dist_warper(self):
input_ids = None
vocab_size = 10
batch_size = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
dist = torch.log(
torch.tensor([[0.97, 0.01, 0.01, 0.01], [0.4, 0.2, 0.2, 0.2]], device=torch_device, dtype=torch.float)
)
typical_warp = TypicalLogitsWarper(0.5)
filtered_dist = torch.exp(typical_warp(input_ids, dist))
# dist should be filtered to keep min num values so that sum is >= 0.7
# exp (-inf) => 0
EXPECTED_FILTERED_DIST = torch.tensor(
[[0.97, 0.0, 0.0, 0.0], [0.0, 0.2, 0.2, 0.2]], device=torch_device, dtype=torch.float
)
torch.testing.assert_close(filtered_dist, EXPECTED_FILTERED_DIST, rtol=1e-3, atol=1e-3)
# processor should not change logits in-place
self.assertFalse(torch.all(typical_warp(input_ids, dist) == dist))
# check special cases
length = 5
logits = self._get_uniform_logits(batch_size=batch_size, length=length)
typical_warp_safety_check = TypicalLogitsWarper(mass=0.5, filter_value=0.0, min_tokens_to_keep=3)
scores = typical_warp_safety_check(input_ids, logits)
# uniform dist is not changed
self.assertListEqual((scores == 0.0).to(torch.long).sum(dim=-1).tolist(), [0, 0])
# check edge cases with negative and extreme logits
ramp_logits = torch.arange(vocab_size, device=torch_device, dtype=torch.float).unsqueeze(0).repeat(
batch_size, 1
) - (vocab_size // 2)
# make ramp_logits more extreme
ramp_logits[1] = ramp_logits[1] * 100.0
# make sure at least 2 tokens are kept
typical_warp = TypicalLogitsWarper(0.7, min_tokens_to_keep=2, filter_value=0.0)
filtered_dist = typical_warp(input_ids, ramp_logits)
# first batch should keep two tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).to(torch.long).sum(dim=-1).tolist(), [2, 2])
def test_epsilon_dist_warper(self):
input_ids = None
vocab_size = 10
batch_size = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
dist = torch.log(
torch.tensor(
[[0.87, 0.099, 0.001, 0.03], [0.4, 0.299, 0.101, 0.2]], device=torch_device, dtype=torch.float
)
)
epsilon_warp = EpsilonLogitsWarper(0.1)
filtered_dist = torch.exp(epsilon_warp(input_ids, dist))
# dist should be filtered to only keep values with proba >= 0.1
# exp (-inf) => 0
EXPECTED_FILTERED_DIST = torch.tensor(
[[0.87, 0, 0, 0], [0.4, 0.299, 0.101, 0.2]], device=torch_device, dtype=torch.float
)
torch.testing.assert_close(filtered_dist, EXPECTED_FILTERED_DIST, rtol=1e-3, atol=1e-3)
# processor should not change logits in-place
self.assertFalse(torch.all(epsilon_warp(input_ids, dist) == dist))
# check edge cases with negative and extreme logits
ramp_logits = torch.arange(vocab_size, device=torch_device, dtype=torch.float).unsqueeze(0).repeat(
batch_size, 1
) - (vocab_size // 2)
# make ramp_logits more extreme
ramp_logits[1] = ramp_logits[1] * 100.0
# make sure at least 2 tokens are kept
epsilon_warp = EpsilonLogitsWarper(5e-2, min_tokens_to_keep=2, filter_value=0.0)
filtered_dist = epsilon_warp(input_ids, ramp_logits)
# first batch should keep 3 tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).to(torch.long).sum(dim=-1).tolist(), [3, 2])
def test_eta_dist_warper(self):
input_ids = None
vocab_size = 10
batch_size = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
dist = torch.log(
torch.tensor([[0.0, 0.1, 0.8, 0.1], [0.01, 0.04, 0.9, 0.05]], device=torch_device, dtype=torch.float)
)
eta_warp = EtaLogitsWarper(0.0625, device=torch_device)
filtered_dist = torch.exp(eta_warp(input_ids, dist))
# dist should be filtered to only keep values with proba >= min(0.0625, sqrt(0.0625) * e^-H(p))
# min(0.0625, 0.1320) is the cutoff for the first row and min(0.0625, 0.1644) is for the second
# where H is the entropy function and p is the probability vector.
# exp (-inf) => 0
EXPECTED_FILTERED_DIST = torch.tensor(
[[0.0, 0.1, 0.8, 0.1], [0.0, 0.0, 0.9, 0.0]], device=torch_device, dtype=torch.float
)
torch.testing.assert_close(filtered_dist, EXPECTED_FILTERED_DIST, rtol=1e-3, atol=1e-3)
# processor should not change logits in-place
self.assertFalse(torch.all(eta_warp(input_ids, dist) == dist))
# check edge cases with negative and extreme logits
ramp_logits = torch.arange(vocab_size, device=torch_device, dtype=torch.float).unsqueeze(0).repeat(
batch_size, 1
) - (vocab_size // 2)
# make ramp_logits more extreme
ramp_logits[1] = ramp_logits[1] * 100.0
# make sure at least 2 tokens are kept
eta_warp = EtaLogitsWarper(0.1, min_tokens_to_keep=2, filter_value=0.0, device=torch_device)
filtered_dist = eta_warp(input_ids, ramp_logits)
# first batch should keep 2 tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).to(torch.long).sum(dim=-1).tolist(), [2, 2])
def test_no_repeat_ngram_dist_processor(self):
vocab_size = 3
batch_size = 2
input_ids = torch.tensor([[1, 1, 2, 1], [0, 1, 0, 1]], device=torch_device, dtype=torch.long)
scores = self._get_uniform_logits(batch_size, vocab_size)
no_repeat_proc_2_gram = NoRepeatNGramLogitsProcessor(2)
no_repeat_proc_3_gram = NoRepeatNGramLogitsProcessor(3)
filtered_scores_2_gram = no_repeat_proc_2_gram(input_ids, scores)
filtered_scores_3_gram = no_repeat_proc_3_gram(input_ids, scores)
# 2-gram would forbid 2nd and 3rd token (1,2) at 1st batch and 1st token (0) at 2nd batch
self.assertListEqual(torch.isinf(filtered_scores_2_gram).tolist(), [[False, True, True], [True, False, False]])
# 3-gram would forbid no token at 1st batch and 1st token (0) at 2nd batch
self.assertListEqual(
torch.isinf(filtered_scores_3_gram).tolist(), [[False, False, False], [True, False, False]]
)
# processor should not change logits in-place
self.assertFalse(torch.all(scores == filtered_scores_2_gram))
self.assertFalse(torch.all(scores == filtered_scores_3_gram))
def test_encoder_no_repeat_ngram_dist_processor(self):
vocab_size = 3
num_beams = 2
batch_size = 1
encoder_input_ids = torch.tensor([1, 2, 1, 1], device=torch_device, dtype=torch.long)
input_ids = torch.tensor([[1, 2, 1], [8, 0, 2]], device=torch_device, dtype=torch.long)
scores = self._get_uniform_logits(batch_size * num_beams, vocab_size)
no_repeat_proc_2_gram = EncoderNoRepeatNGramLogitsProcessor(2, encoder_input_ids=encoder_input_ids)
no_repeat_proc_3_gram = EncoderNoRepeatNGramLogitsProcessor(3, encoder_input_ids=encoder_input_ids)
filtered_scores_2_gram = no_repeat_proc_2_gram(input_ids, scores)
filtered_scores_3_gram = no_repeat_proc_3_gram(input_ids, scores)
# 2-gram would forbid 1st and 2nd token at 1st beam and 1st token (0) at 2nd beam
self.assertListEqual(torch.isinf(filtered_scores_2_gram).tolist(), [[False, True, True], [False, True, False]])
# 3-gram would forbid 1st token at 1st beam and no token at 2nd beam
self.assertListEqual(
torch.isinf(filtered_scores_3_gram).tolist(), [[False, True, False], [False, False, False]]
)
# processor should not change logits in-place
self.assertFalse(torch.all(scores == filtered_scores_2_gram))
self.assertFalse(torch.all(scores == filtered_scores_3_gram))
# Batched input
vocab_size = 3
num_beams = 2
batch_size = 2
encoder_input_ids = torch.tensor([[1, 2, 1, 1], [0, 0, 2, 1]], device=torch_device, dtype=torch.long)
input_ids = torch.tensor([[1, 2, 1], [1, 0, 2], [0, 0, 0], [0, 2, 2]], device=torch_device, dtype=torch.long)
scores = self._get_uniform_logits(batch_size * num_beams, vocab_size)
no_repeat_proc_2_gram = EncoderNoRepeatNGramLogitsProcessor(2, encoder_input_ids=encoder_input_ids)
no_repeat_proc_3_gram = EncoderNoRepeatNGramLogitsProcessor(3, encoder_input_ids=encoder_input_ids)
filtered_scores_2_gram = no_repeat_proc_2_gram(input_ids, scores.clone())
filtered_scores_3_gram = no_repeat_proc_3_gram(input_ids, scores.clone())
# 2gram
# Batch 1
# - Beam 1: tokens (1, 2) forbidden
# - Beam 2: tokens (1) forbidden
# Batch 2
# - Beam 1: tokens (0, 2) forbidden
# - Beam 2: tokens (1) forbidden
self.assertListEqual(
torch.isinf(filtered_scores_2_gram).tolist(),
[[False, True, True], [False, True, False], [True, False, True], [False, True, False]],
)
# Batch 1
# - Beam 1: tokens (1) forbidden
# - Beam 2: tokens () forbidden
# Batch 2
# - Beam 1: tokens (2) forbidden
# - Beam 2: tokens () forbidden
self.assertListEqual(
torch.isinf(filtered_scores_3_gram).tolist(),
[[False, True, False], [False, False, False], [False, False, True], [False, False, False]],
)
def test_no_bad_words_dist_processor(self):
vocab_size = 5
batch_size = 2
eos_token_id = 4
input_ids = torch.tensor([[0, 1, 3, 1], [0, 1, 0, 1]], device=torch_device, dtype=torch.long)
bad_word_tokens = [[1], [4], [1, 0], [0, 1, 2], [1, 3, 1, 3]]
scores = self._get_uniform_logits(batch_size, vocab_size)
no_bad_words_dist_proc = NoBadWordsLogitsProcessor(bad_words_ids=bad_word_tokens, eos_token_id=eos_token_id)
filtered_scores = no_bad_words_dist_proc(input_ids, scores)
# batch 1: 1st, 2nd, and 4th (0, 1, 3) token are forbidden
# batch 2: 1st, 2nd, and 3rd (0, 1, 2) token are forbidden
# Note that 5th element cannot be forbidden as it is EOS token
self.assertListEqual(
torch.isinf(filtered_scores).tolist(), [[True, True, False, True, False], [True, True, True, False, False]]
)
# processor should not change logits in-place
self.assertFalse(torch.all(scores == filtered_scores))
# check edge case
no_bad_words_dist_proc = NoBadWordsLogitsProcessor(bad_words_ids=[[4]], eos_token_id=eos_token_id)
filtered_scores = no_bad_words_dist_proc(input_ids, scores)
torch.testing.assert_close(scores, filtered_scores, rtol=1e-3, atol=1e-3)
def test_bias_dist_processor(self):
vocab_size = 5
batch_size = 2
input_ids = torch.tensor([[0, 1, 3, 1], [0, 1, 0, 1]], device=torch_device, dtype=torch.long)
positive_bias = {(1,): 100.0, (4,): 100.0}
negative_bias = {(1, 0): -100.0, (0, 1, 2): -100.0, (1, 3, 1, 3): -100.0}
# biases the same termination twice, to ensure we can handle overlapping terminations (it won't have an effect
# on the test cases, though)
negative_bias.update({(1, 3, 1, 3, 1, 3): -100.0})
sequence_bias = {**positive_bias, **negative_bias}
# scores = 0 to facilitate checks
scores = torch.zeros((batch_size, vocab_size), dtype=torch.float, device=torch_device)
bias_dist_proc = SequenceBiasLogitsProcessor(sequence_bias=sequence_bias)
filtered_scores = bias_dist_proc(input_ids, scores)
# batch 1: positive bias: tokens (1, 4); negative bias: tokens (0, 3); neutral: tokens (2)
# batch 2: positive bias: tokens (1, 4); negative bias: tokens (0, 2); neutral: tokens (3)
self.assertListEqual(
filtered_scores.tolist(), [[-100.0, 100.0, 0.0, -100.0, 100.0], [-100.0, 100.0, -100.0, 0.0, 100.0]]
)
# processor should not change logits in-place
self.assertFalse(torch.all(scores == filtered_scores))
def test_processor_list(self):
batch_size = 4
sequence_length = 10
vocab_size = 15
eos_token_id = 0
# dummy input_ids and scores
input_ids = ids_tensor((batch_size, sequence_length), vocab_size)
input_ids_comp = input_ids.clone()
scores = self._get_uniform_logits(batch_size, vocab_size)
scores_comp = scores.clone()
# instantiate all dist processors
min_dist_proc = MinLengthLogitsProcessor(min_length=10, eos_token_id=eos_token_id, device=torch_device)
temp_dist_warp = TemperatureLogitsWarper(temperature=0.5)
rep_penalty_proc = RepetitionPenaltyLogitsProcessor(penalty=2.0)
top_k_warp = TopKLogitsWarper(3)
top_p_warp = TopPLogitsWarper(0.8)
no_repeat_proc = NoRepeatNGramLogitsProcessor(2)
no_bad_words_dist_proc = NoBadWordsLogitsProcessor(bad_words_ids=[[1]], eos_token_id=eos_token_id)
# no processor list
scores = min_dist_proc(input_ids, scores)
scores = temp_dist_warp(input_ids, scores)
scores = rep_penalty_proc(input_ids, scores)
scores = top_k_warp(input_ids, scores)
scores = top_p_warp(input_ids, scores)
scores = no_repeat_proc(input_ids, scores)
scores = no_bad_words_dist_proc(input_ids, scores)
# with processor list
processor = LogitsProcessorList(
[
min_dist_proc,
temp_dist_warp,
rep_penalty_proc,
top_k_warp,
top_p_warp,
no_repeat_proc,
no_bad_words_dist_proc,
]
)
scores_comp = processor(input_ids, scores_comp)
# scores should be equal
torch.testing.assert_close(scores, scores_comp, rtol=1e-3, atol=1e-3)
# input_ids should never be changed
self.assertListEqual(input_ids.tolist(), input_ids_comp.tolist())
def test_prefix_constrained_logits_processor(self):
vocab_size = 5
batch_size = 2
input_ids = torch.tensor([[0, 1, 3, 1], [0, 1, 0, 1]], device=torch_device, dtype=torch.long)
scores = self._get_uniform_logits(batch_size, vocab_size)
def prefix_allowed_tokens_fn(batch_id, inputs_ids):
return [[0, 1], [2, 3]][batch_id]
prefix_constrained_logits_proc = PrefixConstrainedLogitsProcessor(prefix_allowed_tokens_fn, 1)
filtered_scores = prefix_constrained_logits_proc(input_ids, scores)
# batch 1: 1st, 2nd (0, 1) token are allowed
# batch 2: 3rd, 4th (2, 3) token are allowed
self.assertListEqual(
torch.isinf(filtered_scores).tolist(), [[False, False, True, True, True], [True, True, False, False, True]]
)
def empty_prefix_allowed_tokens_fn(batch_id, inputs_ids):
return []
prefix_constrained_logits_proc = PrefixConstrainedLogitsProcessor(empty_prefix_allowed_tokens_fn, 1)
self.assertRaises(ValueError, prefix_constrained_logits_proc, input_ids, scores)
# processor should not change logits in-place
self.assertFalse(torch.all(scores == filtered_scores))
def test_hamming_diversity(self):
vocab_size = 4
num_beams = 2
num_beam_groups = 2
scores = self._get_uniform_logits(num_beams, vocab_size)
# batch_idx = 0 -> index batch_idx * num_beam_groups -> idx = 0 * 2 = 0 -> penalises tokens 1
# batch_idx = 1 -> index batch_idx * num_beam_groups -> idx = 1 * 2 = 2 -> penalises tokens 1
current_tokens = torch.tensor([0, 3, 1, 2], device=torch_device, dtype=torch.long)
diversity_logits_processor = HammingDiversityLogitsProcessor(
diversity_penalty=1.0, num_beams=num_beams, num_beam_groups=num_beam_groups
)
processed_scores = diversity_logits_processor(None, scores, current_tokens, 1)
self.assertTrue(
torch.allclose(
processed_scores[0], torch.tensor([-0.7500, 0.2500, 0.2500, 0.2500], device=torch_device), atol=1e-3
)
)
self.assertTrue(
torch.allclose(
processed_scores[1], torch.tensor([0.2500, -0.7500, 0.2500, 0.2500], device=torch_device), atol=1e-3
)
)
# processor should not change logits in-place
self.assertFalse(torch.all(scores == processed_scores))
def test_forced_bos_token_logits_processor(self):
vocab_size = 20
batch_size = 4
bos_token_id = 0
logits_processor = ForcedBOSTokenLogitsProcessor(bos_token_id=bos_token_id)
# check that all scores are -inf except the bos_token_id score
input_ids = ids_tensor((batch_size, 1), vocab_size=20)
scores = self._get_uniform_logits(batch_size, vocab_size)
processed_scores = logits_processor(input_ids, scores)
self.assertTrue(torch.isneginf(processed_scores[:, bos_token_id + 1 :]).all())
# score for bos_token_id should be zero
self.assertListEqual(processed_scores[:, bos_token_id].tolist(), 4 * [0])
# processor should not change logits in-place
self.assertFalse(torch.all(scores == processed_scores))
# check that bos_token_id is not forced if current length is greater than 1
input_ids = ids_tensor((batch_size, 4), vocab_size=20)
scores = self._get_uniform_logits(batch_size, vocab_size)
processed_scores = logits_processor(input_ids, scores)
self.assertFalse(torch.isinf(processed_scores).any())
def test_forced_eos_token_logits_processor(self):
vocab_size = 20
batch_size = 4
eos_token_id = 0
max_length = 5
logits_processor = ForcedEOSTokenLogitsProcessor(
max_length=max_length, eos_token_id=eos_token_id, device=torch_device
)
# check that all scores are -inf except the eos_token_id when max_length-1 is reached
input_ids = ids_tensor((batch_size, 4), vocab_size=20)
scores = self._get_uniform_logits(batch_size, vocab_size)
processed_scores = logits_processor(input_ids, scores)
self.assertTrue(torch.isneginf(processed_scores[:, eos_token_id + 1 :]).all())
# score for eos_token_id should be zero
self.assertListEqual(processed_scores[:, eos_token_id].tolist(), 4 * [0])
# processor should not change logits in-place
self.assertFalse(torch.all(scores == processed_scores))
# check that eos_token_id is not forced if max_length-1 is not reached
input_ids = ids_tensor((batch_size, 3), vocab_size=20)
scores = self._get_uniform_logits(batch_size, vocab_size)
processed_scores = logits_processor(input_ids, scores)
self.assertFalse(torch.isinf(processed_scores).any())
def test_remove_nan_inf_logits_processor(self):
scores = torch.tensor(
[[0.0, 0.7, 0.8, float("nan")], [0.1, float("inf"), 0.3, float("-inf")]], device=torch_device
)
input_ids = ids_tensor((2, 4), vocab_size=20)
logits_processor = InfNanRemoveLogitsProcessor()
processed_scores = logits_processor(input_ids, scores)
self.assertTrue(
torch.allclose(
processed_scores,
torch.tensor(
[
[0.0, 0.7, 0.8, 0.0],
[0.1, torch.finfo(processed_scores.dtype).max, 0.3, torch.finfo(processed_scores.dtype).min],
],
device=torch_device,
),
atol=1e-6,
)
)
# processor should not change logits in-place
self.assertFalse(torch.all(scores == processed_scores))
def test_exponential_decay_length_penalty(self):
vocab_size = 20
batch_size = 4
eos_token_id = 0
penalty_start = 5
penalty_factor = 1.1
input_ids = ids_tensor((batch_size, 2), vocab_size=vocab_size)
input_ids_seq_length = input_ids.shape[-1]
length_decay_processor = ExponentialDecayLengthPenalty(
exponential_decay_length_penalty=(penalty_start, penalty_factor),
eos_token_id=eos_token_id,
input_ids_seq_length=input_ids_seq_length,
)
# check that penalty is not applied before start
scores = self._get_uniform_logits(batch_size, vocab_size)
scores_before_start = length_decay_processor(input_ids, scores)
self.assertListEqual(scores_before_start[:, eos_token_id].tolist(), scores[:, eos_token_id].tolist())
# check that penalty is applied after start
input_ids = ids_tensor((batch_size, 20), vocab_size=vocab_size)
scores = self._get_uniform_logits(batch_size, vocab_size)
scores_after_start = length_decay_processor(input_ids, scores)
self.assertTrue(torch.gt(scores_after_start[:, eos_token_id], scores[:, eos_token_id]).all())
# check the penalty increases negative scores
input_ids = ids_tensor((batch_size, 20), vocab_size=vocab_size)
scores = torch.neg(self._get_uniform_logits(batch_size, vocab_size))
scores_after_start = length_decay_processor(input_ids, scores)
self.assertTrue(torch.gt(scores_after_start[:, eos_token_id], scores[:, eos_token_id]).all())
# processor should not change logits in-place
self.assertFalse(torch.all(scores == scores_after_start))
def test_normalization(self):
input_ids = None
scores = torch.tensor(
[[-23.18, -29.96, -43.54, 47.77], [-33.58, -26.87, -32.96, 22.51]], device=torch_device, dtype=torch.float
)
logit_normalization = LogitNormalization()
normalized_scores = logit_normalization(input_ids, scores).exp()
ones = torch.ones(scores.shape[0], device=torch_device, dtype=torch.float)
self.assertTrue(normalized_scores.sum(dim=-1).allclose(ones))
self.assertTrue(normalized_scores.allclose(scores.softmax(dim=-1)))
# processor should not change logits in-place
self.assertFalse(torch.all(scores == normalized_scores))
def test_classifier_free_guidance(self):
class Namespace(dict):
pass
logits_uncond = torch.tensor([[[1.0, 0, 1.5]]])
logits_cond = torch.tensor([[[1.0, 1.0, 1.0]]])
def dummy_model(input_ids, attention_mask, use_cache=True, past_key_values=None):
out = Namespace()
out.logits = logits_uncond
out.past_key_values = None
return out
def lsm(x):
return torch.nn.functional.log_softmax(x, dim=-1)
# explicit unconditional prompt + attention mask
input_ids = torch.LongTensor([[0]])
cfg = UnbatchedClassifierFreeGuidanceLogitsProcessor(
1.5, dummy_model, input_ids, torch.ones_like(input_ids, dtype=torch.long)
)
out = cfg(input_ids, logits_cond)[0, -1]
res = (lsm(logits_uncond) + 1.5 * (lsm(logits_cond) - lsm(logits_uncond)))[0, -1]
self.assertAlmostEqual(out[0].item(), res[0].item())
self.assertAlmostEqual(out[1].item(), res[1].item())
self.assertAlmostEqual(out[2].item(), res[2].item())
# explicit unconditional prompt
input_ids = torch.LongTensor([[0]])
cfg = UnbatchedClassifierFreeGuidanceLogitsProcessor(1.5, dummy_model, input_ids)
out = cfg(input_ids, logits_cond)[0, -1]
res = (lsm(logits_uncond) + 1.5 * (lsm(logits_cond) - lsm(logits_uncond)))[0, -1]
self.assertAlmostEqual(out[0].item(), res[0].item())
self.assertAlmostEqual(out[1].item(), res[1].item())
self.assertAlmostEqual(out[2].item(), res[2].item())
# all implicit
input_ids = torch.LongTensor([[0]])
cfg = UnbatchedClassifierFreeGuidanceLogitsProcessor(1.5, dummy_model)
out = cfg(input_ids, logits_cond)[0, -1]
res = (lsm(logits_uncond) + 1.5 * (lsm(logits_cond) - lsm(logits_uncond)))[0, -1]
self.assertAlmostEqual(out[0].item(), res[0].item())
self.assertAlmostEqual(out[1].item(), res[1].item())
self.assertAlmostEqual(out[2].item(), res[2].item())
def test_early_stop_processor(self):
input_ids = None
eos_token_id = 2
min_eos_p = 0.1 ## some small float
scores = self._get_uniform_logits(2, 4)
scores[0][eos_token_id] = -6 ## less than log(min_eos_p)
esp = BarkEosPrioritizerLogitsProcessor(eos_token_id=eos_token_id, min_eos_p=min_eos_p, device=torch_device)
actual_scores = esp(input_ids, scores)
expected_scores_list = [
scores[0].tolist(),
[float("-inf"), float("-inf"), scores[0][0], float("-inf")],
]
self.assertListEqual(actual_scores.tolist(), expected_scores_list)
def test_early_stop_processor_multi_eos(self):
input_ids = None
eos_token_id = [2, 3]
min_eos_p = 0.1 ## some small float
scores = self._get_uniform_logits(2, 4)
scores[0][eos_token_id] = -6 ## less than log(min_eos_p)
esp = BarkEosPrioritizerLogitsProcessor(eos_token_id=eos_token_id, min_eos_p=min_eos_p, device=torch_device)
actual_scores = esp(input_ids, scores)
expected_scores_list = [
scores[0].tolist(),
[float("-inf"), float("-inf"), scores[0][0], scores[0][0]],
]
self.assertListEqual(actual_scores.tolist(), expected_scores_list)
def test_watermarking_processor(self):
batch_size = 3
vocab_size = 20
input_ids = ids_tensor((batch_size, 5), vocab_size=20)
scores = self._get_uniform_logits(batch_size, vocab_size)
# raise error if incorrect seeding_scheme is passed
with self.assertRaises(ValueError):
WatermarkLogitsProcessor(vocab_size=vocab_size, device="cpu", seeding_scheme="hash")
# raise error if the greenlist_ratio in not in range (0.0, 1.0)
with self.assertRaises(ValueError):
WatermarkLogitsProcessor(vocab_size=vocab_size, device="cpu", greenlist_ratio=1.2)
watermark = WatermarkLogitsProcessor(vocab_size=vocab_size, device=input_ids.device)
# use fixed id for last token, needed for reproducibility and tests
input_ids[:, -1] = 10
scores_wo_bias = scores[:, -1].clone()
out = watermark(input_ids=input_ids, scores=scores)
greenlist_id = 3 if torch_device == "xpu" else 1
self.assertTrue((out[:, greenlist_id] == scores_wo_bias + watermark.bias).all())
@parameterized.expand([(5, 3, 10000), (10, 5, 1000)])
def test_synthidtext_watermarking_processor_bias_uniformity(self, ngram_len, num_layers, vocab_size):
"""Test SynthID watermarked distribution bias uniformity over iterations."""
torch.manual_seed(0)
np.random.seed(0)
watermarking_config = {
"ngram_len": ngram_len,
"keys": np.random.randint(low=0, high=2**16, size=(num_layers,)),
"sampling_table_size": 2**16,
"sampling_table_seed": 0,
"context_history_size": 512,
"device": torch_device,
}
batch_size = 100000
ngrams = torch.randint(
low=0,
high=vocab_size,
size=(batch_size, ngram_len),
device=torch_device,
)
logits_processor = SynthIDTextWatermarkLogitsProcessor(**watermarking_config)
g_values = logits_processor.compute_g_values(ngrams)
g_values_mean = torch.mean(torch.mean(g_values.float(), dim=0))
self.assertAlmostEqual(g_values_mean, 0.5, delta=0.01)
@parameterized.expand([(10000, 3), (1000, 20)])
def test_synthidtext_watermark_processor_bias_uniformity_across_vocab(self, vocab_size, num_layers):
"""Test SynthID watermarked distribution bias uniformity over vocabs of the model."""
batch_size = 1000
ngram_len = 5
torch.manual_seed(0)
np.random.seed(0)
watermarking_config = {
"ngram_len": ngram_len,
"keys": np.random.randint(low=0, high=2**16, size=(num_layers,)),
"sampling_table_size": 2**16,
"sampling_table_seed": 0,
"context_history_size": 512,
"device": torch_device,
}
n_minus_1_grams = torch.randint(
low=0,
high=vocab_size,
size=(batch_size, watermarking_config["ngram_len"] - 1),
device=torch_device,
)
logits_processor = SynthIDTextWatermarkLogitsProcessor(**watermarking_config)
ngram_keys, _ = logits_processor._compute_keys(
n_minus_1_grams,
torch.stack([torch.arange(vocab_size, device=torch_device) for _ in range(batch_size)]),
)
g_values = logits_processor.sample_g_values(ngram_keys)
# g_values shape should be [batch_size, vocab_size, num_layers]
g_values_mean = torch.mean(torch.mean(g_values.float(), dim=1))
self.assertAlmostEqual(g_values_mean, 0.5, delta=0.001)
@parameterized.expand([(2, "uniform"), (10, "uniform"), (2, "random"), (10, "random")])
def test_synthidtext_watermark_processor_distributional_convergence(self, vocab_size, logits_type):
"""Check if watermarked distribution converges to unwatermarked logits distribution."""
batch_size = 1500
num_keys = 1000
updated_softmaxes = 0
np.random.seed(0)
torch.manual_seed(0)
if logits_type == "uniform":
fixed_logits = torch.ones((batch_size, vocab_size), device=torch_device)
elif logits_type == "random":
fixed_logits = torch.rand(
(
1,
vocab_size,
),
device=torch_device,
)
fixed_logits = fixed_logits.repeat(batch_size, 1)
else:
raise ValueError(f"Unrecognized logits_type {logits_type}")
for _ in range(num_keys):
watermarking_config = {
"ngram_len": 5,
"keys": np.random.randint(0, 10**9, size=(1,), dtype=np.int64),
"sampling_table_size": 2**16,
"sampling_table_seed": 0,
"context_history_size": 1024,
"device": torch_device,
}
logits_processor = SynthIDTextWatermarkLogitsProcessor(**watermarking_config)
ngrams = torch.randint(
low=0,
high=vocab_size,
size=(batch_size, watermarking_config["ngram_len"]),
device=torch_device,
)
# Insert ngram-1 into logit_processor state.
for idx in range(watermarking_config["ngram_len"] - 1):
_ = logits_processor(ngrams[:, :idx], fixed_logits)
updated_scores = logits_processor(ngrams, fixed_logits)
updated_softmaxes += torch.nn.functional.softmax(updated_scores, dim=1).cpu().numpy()
updated_softmaxes = np.mean(updated_softmaxes, axis=0) / num_keys
is_close = torch.all(
torch.isclose(
torch.tensor(updated_softmaxes, device=torch_device),
torch.nn.Softmax()(fixed_logits[0]), # Take any batch entry, all are same.
atol=1e-3,
rtol=0,
)
)
self.assertTrue(is_close)
@parameterized.expand([(2, 10, 1, 0.01), (100, 5, 1, 0.01), (100, 10, 2, 0.02)])
def test_synthidtext_watermark_processor_bias_test(self, vocab_size, ngram_len, num_layers, atol):
"""Test SynthID watermarking bias matches theoretical value."""
batch_size = 20000
generator = torch.Generator(device=torch_device).manual_seed(0)
np.random.seed(0)
keys = [np.random.randint(0, 10**9) for _ in range(num_layers)]
# Use 10**9 rather than vocab_size to ensure variety in (n-1)-grams.
context = torch.randint(
low=0,
high=10**9,
size=(batch_size, ngram_len - 1),
dtype=torch.int64,
generator=generator,
device=torch_device,
)
context_history_size = 1024
logits_processor = SynthIDTextWatermarkLogitsProcessor(
ngram_len=ngram_len,
keys=keys,
sampling_table_size=2**16,
sampling_table_seed=0,
context_history_size=context_history_size,
device=torch_device,
)
scores = torch.ones(
(batch_size, vocab_size),
dtype=torch.float64,
device=torch_device,
)
# Init state of the logits processor.
logits_processor(context, scores)
# insert context into the state.
for idx in range(1, ngram_len - 1):
_ = logits_processor(context[:, :idx], scores)
updated_scores = logits_processor(context, scores)
probs = torch.nn.functional.softmax(updated_scores, dim=1)
generator = torch.Generator(device=torch_device).manual_seed(0)
next_tokens = torch.multinomial(
probs,
num_samples=1,
generator=generator,
)
ngrams = torch.concat((context, next_tokens), dim=1)
g_values = logits_processor.compute_g_values(ngrams)
mean_g_values = g_values.mean(dtype=torch.float64, dim=(0, 1))
expected_mean_g_value = logits_processor.expected_mean_g_value(
vocab_size=vocab_size,
)
is_close = torch.all(
torch.isclose(
mean_g_values,
torch.tensor(expected_mean_g_value, dtype=torch.float64, device=torch_device),
atol=atol,
rtol=0,
)
)
self.assertTrue(is_close)
def test_dia_classifier_free_guidance(self):
input_ids = torch.LongTensor([[0]])
logits_uncond = torch.tensor([[1.0, 0, 1.5]])
logits_cond = torch.tensor([[1.0, 1.0, 1.0]])
# base cfg with conditioned as center
cfg = DiaClassifierFreeGuidanceLogitsProcessor(guidance_scale=1.5)
out = cfg(input_ids, torch.cat([logits_cond, logits_uncond], dim=0))
res = logits_cond + 1.5 * (logits_cond - logits_uncond)
self.assertAlmostEqual(out[0, 0].item(), res[0, 0].item())
self.assertAlmostEqual(out[0, 1].item(), res[0, 1].item())
self.assertAlmostEqual(out[0, 2].item(), res[0, 2].item())
# additional top k (on cond logits)
cfg = DiaClassifierFreeGuidanceLogitsProcessor(guidance_scale=1.5, guidance_top_k=1)
out = cfg(input_ids, torch.cat([logits_cond, logits_uncond], dim=0))
res = logits_cond + 1.5 * (logits_cond - logits_uncond)
mask = res == res.max()
res = logits_cond.clone()
res[~mask.bool()] = -float("inf")
self.assertAlmostEqual(out[0, 0].item(), res[0, 0].item())
self.assertAlmostEqual(out[0, 1].item(), res[0, 1].item())
self.assertAlmostEqual(out[0, 2].item(), res[0, 2].item())
def test_dia_channel_filter(self):
eos = 2
bsz, channels, vocab = 2, 2, 4
input_ids = torch.LongTensor([[0]])
logits = torch.zeros(size=(bsz, channels, vocab)).view(bsz * channels, vocab)
logits[0, eos] = 1 # Eos max (forced)
logits[1, eos] = 1 # Eos max (forced) but not channel 0
channel_filter = DiaEOSChannelFilterLogitsProcessor(num_channels=channels, eos_token_id=eos)
out = channel_filter(input_ids, logits).view(bsz, channels, vocab)
for i in range(vocab):
if i > eos:
# special tokens are not to be predicted
self.assertTrue((out[:, :, i] == -float("inf")).all())
elif i == eos:
# Eos forced on channel 0
self.assertTrue(out[0, 0, i] == 1)
# Eos suppressed on everything else (even if max before)
self.assertTrue(out[0, 1, i] == -float("inf"))
self.assertTrue((out[1, :, i] == -float("inf")).all())
else:
# Eos forced on channel 0
self.assertTrue(out[0, 0, i] == -float("inf"))
# previous values
self.assertTrue(out[0, 1, i] == 0)
self.assertTrue((out[1, :, i] == 0).all())
def test_dia_delay_pattern(self):
def check_eos_logits(out, logits, batch, channel, eos):
for i in range(vocab):
if i == eos:
self.assertTrue(out[batch, channel, i] == 0)
else:
self.assertTrue(out[batch, channel, i] == -float("inf"))
for c in range(channel):
if c != channel:
self.assertTrue((out[batch, c] == logits[batch, c]).all())
eos = 2
delay_pattern = [0, 2, 3]
max_generation_len = 10
bsz, channels, vocab = 2, 3, 4
input_ids = torch.LongTensor([[0]])
logits = torch.zeros(size=(bsz, channels, vocab))
# Ensure that argmax can not result in eos
logits[:, :, eos] = -1
delay_pattern_processor = DiaEOSDelayPatternLogitsProcessor(
delay_pattern=delay_pattern, eos_token_id=eos, max_generation_len=max_generation_len
)
out = delay_pattern_processor(input_ids, logits.clone()).view(bsz, channels, vocab)
# Nothing should happen except for init of some attributes
self.assertTrue((out == logits).all())
self.assertTrue((~delay_pattern_processor.active_batches).all())
self.assertTrue(
(delay_pattern_processor.delay_pattern == torch.tensor([delay_pattern for _ in range(bsz)])).all()
)
# Make first batch end
logits[0, 0, eos] = 1
# Go through the complete delay pattern
for i in range(max(delay_pattern) + 1):
out = delay_pattern_processor(input_ids, logits.clone()).view(bsz, channels, vocab)
# no delay should kick in
if i == 1:
self.assertTrue((out == logits).all())
else:
j = i if i == 0 else i - 1
check_eos_logits(out=out, logits=logits, batch=0, channel=j, eos=eos)
self.assertTrue((out[1] == logits[1]).all())
self.assertTrue(delay_pattern_processor.active_batches[0])
self.assertFalse(delay_pattern_processor.active_batches[1])
self.assertTrue(
(
delay_pattern_processor.delay_pattern[0]
== torch.tensor([delay - (i + 1) for delay in delay_pattern])
).all()
)
self.assertTrue((delay_pattern_processor.delay_pattern[1] == torch.tensor(delay_pattern)).all())
# Make second batch end
logits[1, 0, eos] = 1
# Just to check if other batches could work
out = delay_pattern_processor(input_ids, logits.clone()).view(bsz, channels, vocab)
self.assertTrue((out[0] == logits[0]).all())
self.assertTrue(delay_pattern_processor.active_batches.all())
self.assertTrue(
(delay_pattern_processor.delay_pattern[0] == torch.tensor([delay - 5 for delay in delay_pattern])).all()
)
self.assertTrue(
(delay_pattern_processor.delay_pattern[1] == torch.tensor([delay - 1 for delay in delay_pattern])).all()
)
# Last check on max generation length reached (with delay in mind until last channel produces eos)
input_ids = torch.LongTensor([[0] * (max_generation_len - max(delay_pattern) - 1)])
delay_pattern_processor = DiaEOSDelayPatternLogitsProcessor(
delay_pattern=delay_pattern, eos_token_id=eos, max_generation_len=max_generation_len
)
out = delay_pattern_processor(input_ids, logits.clone()).view(bsz, channels, vocab)
check_eos_logits(out=out, logits=logits, batch=0, channel=0, eos=eos)
check_eos_logits(out=out, logits=logits, batch=1, channel=0, eos=eos)
self.assertTrue(delay_pattern_processor.active_batches.all())
self.assertTrue((delay_pattern_processor.delay_pattern == torch.tensor(delay_pattern) - 1).all())