mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-20 13:08:21 +06:00

* add dia model * add tokenizer files * cleanup some stuff * brut copy paste code * rough cleanup of the modeling code * nuke some stuff * more nuking * more cleanups * updates * add mulitLayerEmbedding vectorization * nits * more modeling simplifications * updates * update rope * update rope * just fixup * update configuration files * more cleanup! * default config values * update * forgotten comma * another comma! * update, more cleanups * just more nits * more config cleanups * time for the encoder * fix * sa=mall nit * nits * n * refacto a bit * cleanup * update cv scipt * fix last issues * fix last nits * styling * small fixes * just run 1 generation * fixes * nits * fix conversion * fix * more fixes * full generate * ouf! * fixes! * updates * fix * fix cvrt * fixup * nits * delete wrong test * update * update * test tokenization * let's start changing things bit by bit - fix encoder step * removing custom generation, moving to GenerationMixin * add encoder decoder attention masks for generation * mask changes, correctness checked against ad29837 in dia repo * refactor a bit already --> next cache * too important not to push :) * minimal cleanup + more todos * make main overwrite modeling utils * add cfg filter & eos filter * add eos countdown & delay pattern * update eos countdown * add max step eos countdown * fix tests * fix some things * fix generation with testing * move cfg & eos stuff to logits processor * make RepetitionPenaltyLogitsProcessor flexible - can accept 3D scores like (batch_size, channel, vocab) * fix input_ids concatenation dimension in GenerationMixin for flexibility * Add DiaHangoverLogitsProcessor and DiaExponentialDecayLengthPenalty classes; refactor logits processing in DiaForConditionalGeneration to utilize new configurations and improve flexibility. * Add stopping criteria * refactor * move delay pattern from processor to modeling like musicgen. - add docs - change eos countdown to eos delay pattern * fix processor & fix tests * refactor types * refactor imports * format code * fix docstring to pass ci * add docstring to DiaConfig & add DiaModel to test * fix docstring * add docstring * fix some bugs * check * porting / merging results from other branch - IMPORTANT: it very likely breaks generation, the goal is to have a proper forward path first * experimental testing of left padding for first channel * whoops * Fix merge to make generation work * fix cfg filter * add position ids * add todos, break things * revert changes to generation --> we will force 2d but go 3d on custom stuff * refactor a lot, change prepare decoder ids to work with left padding (needs testing), add todos * some first fixes to get to 10. in generation * some more generation fixes / adjustment * style + rope fixes * move cfg out, simplify a few things, more todos * nit * start working on custom logit processors * nit * quick fixes * cfg top k * more refactor of logits processing, needs a decision if gen config gets the new attributes or if we move it to config or similar * lets keep changes to core code minimal, only eos scaling is questionable atm * simpler eos delay logits processor * that was for debugging :D * proof of concept rope * small fix on device mismatch * cfg fixes + delay logits max len * transformers rope * modular dia * more cleanup * keep modeling consistently 3D, generate handles 2D internally * decoder starts with bos if nothing * post processing prototype * style * lol * force sample / greedy + fixes on padding * style * fixup tokenization * nits * revert * start working on dia tests * fix a lot of tests * more test fixes * nit * more test fixes + some features to simplify code more * more cleanup * forgot that one * autodocs * small consistency fixes * fix regression * small fixes * dia feature extraction * docs * wip processor * fix processor order * processing goes brrr * transpose before * small fix * fix major bug but needs now a closer look into the custom processors esp cfg * small thing on logits * nits * simplify indices and shifts * add simpler version of padding tests back (temporarily) * add logit processor tests * starting tests on processor * fix mask application during generation * some fixes on the weights conversion * style + fixup logits order * simplify conversion * nit * remove padding tests * nits on modeling * hmm * fix tests * trigger * probably gonna be reverted, just a quick design around audio tokenizer * fixup typing * post merge + more typing * initial design for audio tokenizer * more design changes * nit * more processor tests and style related things * add to init * protect import * not sure why tbh * add another protect * more fixes * wow * it aint stopping :D * another missed type issue * ... * change design around audio tokenizer to prioritize init and go for auto - in regards to the review * change to new causal mask function + docstrings * change ternary * docs * remove todo, i dont think its essential tbh * remove pipeline as current pipelines do not fit in the current scheme, same as csm * closer to wrapping up the processor * text to audio, just for demo purposes (will likely be reverted) * check if it's this * save audio function * ensure no grad * fixes on prefixed audio, hop length is used via preprocess dac, device fixes * integration tests (tested locally on a100) + some processor utils / fixes * style * nits * another round of smaller things * docs + some fixes (generate one might be big) * msytery solved * small fix on conversion * add abstract audio tokenizer, change init check to abstract class * nits * update docs + fix some processing :D * change inheritance scheme for audio tokenizer * delete dead / unnecessary code in copied generate loop * last nits on new pipeline behavior (+ todo on tests) + style * trigger --------- Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com> Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> Co-authored-by: Vasqu <antonprogamer@gmail.com>
1361 lines
57 KiB
Python
1361 lines
57 KiB
Python
# Copyright 2020 The HuggingFace Team Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a clone of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
from typing import Union
|
|
|
|
import numpy as np
|
|
from parameterized import parameterized
|
|
|
|
from transformers import is_torch_available
|
|
from transformers.testing_utils import require_torch, torch_device
|
|
|
|
from ..test_modeling_common import ids_tensor
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
from torch import nn
|
|
|
|
from transformers.generation import (
|
|
EncoderNoRepeatNGramLogitsProcessor,
|
|
EncoderRepetitionPenaltyLogitsProcessor,
|
|
EpsilonLogitsWarper,
|
|
EtaLogitsWarper,
|
|
ExponentialDecayLengthPenalty,
|
|
ForcedBOSTokenLogitsProcessor,
|
|
ForcedEOSTokenLogitsProcessor,
|
|
HammingDiversityLogitsProcessor,
|
|
InfNanRemoveLogitsProcessor,
|
|
LogitNormalization,
|
|
LogitsProcessorList,
|
|
MinLengthLogitsProcessor,
|
|
MinNewTokensLengthLogitsProcessor,
|
|
MinPLogitsWarper,
|
|
NoBadWordsLogitsProcessor,
|
|
NoRepeatNGramLogitsProcessor,
|
|
PrefixConstrainedLogitsProcessor,
|
|
RepetitionPenaltyLogitsProcessor,
|
|
SequenceBiasLogitsProcessor,
|
|
SynthIDTextWatermarkLogitsProcessor,
|
|
TemperatureLogitsWarper,
|
|
TopKLogitsWarper,
|
|
TopPLogitsWarper,
|
|
TypicalLogitsWarper,
|
|
UnbatchedClassifierFreeGuidanceLogitsProcessor,
|
|
WatermarkLogitsProcessor,
|
|
)
|
|
from transformers.generation.logits_process import (
|
|
BarkEosPrioritizerLogitsProcessor,
|
|
DiaClassifierFreeGuidanceLogitsProcessor,
|
|
DiaEOSChannelFilterLogitsProcessor,
|
|
DiaEOSDelayPatternLogitsProcessor,
|
|
)
|
|
|
|
|
|
@require_torch
|
|
class LogitsProcessorTest(unittest.TestCase):
|
|
def _get_uniform_logits(self, batch_size: int, length: int):
|
|
scores = torch.ones((batch_size, length), device=torch_device, dtype=torch.float) / length
|
|
return scores
|
|
|
|
def test_min_length_dist_processor(self):
|
|
vocab_size = 20
|
|
batch_size = 4
|
|
eos_token_id = 0
|
|
|
|
min_dist_processor = MinLengthLogitsProcessor(min_length=10, eos_token_id=eos_token_id, device=torch_device)
|
|
|
|
# check that min length is applied at length 5
|
|
input_ids = ids_tensor((batch_size, 5), vocab_size=20)
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
scores_before_min_length = min_dist_processor(input_ids, scores)
|
|
self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist(), 4 * [-float("inf")])
|
|
|
|
# check that min length is not applied anymore at length 15
|
|
input_ids = ids_tensor((batch_size, 15), vocab_size=20)
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
scores_before_min_length = min_dist_processor(input_ids, scores)
|
|
self.assertFalse(torch.isinf(scores_before_min_length).any())
|
|
|
|
@parameterized.expand([(0,), ([0, 18],)])
|
|
def test_new_min_length_dist_processor(self, eos_token_id: Union[int, list[int]]):
|
|
vocab_size = 20
|
|
batch_size = 4
|
|
|
|
# check that first input is skipped (min new length applying)
|
|
input_ids = ids_tensor((batch_size, 5), vocab_size=20)
|
|
new_min_dist_processor = MinNewTokensLengthLogitsProcessor(
|
|
prompt_length_to_skip=input_ids.shape[-1], min_new_tokens=3, eos_token_id=eos_token_id, device=torch_device
|
|
)
|
|
|
|
expected_eos_scores_before_min_length = batch_size * [-float("inf")]
|
|
if isinstance(eos_token_id, list):
|
|
expected_eos_scores_before_min_length *= len(eos_token_id)
|
|
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
scores_before_min_length = new_min_dist_processor(input_ids, scores)
|
|
self.assertListEqual(
|
|
scores_before_min_length[:, eos_token_id].flatten().tolist(), expected_eos_scores_before_min_length
|
|
)
|
|
|
|
# check that, for skipping, now prompt length is 5, after that we expect first 5 tokens will be skipped
|
|
self.assertTrue(new_min_dist_processor.prompt_length_to_skip == 5)
|
|
|
|
# check that min length is applied at length 2
|
|
input_ids = ids_tensor((batch_size, 2), vocab_size=20)
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
scores_before_min_length = new_min_dist_processor(input_ids, scores)
|
|
self.assertListEqual(
|
|
scores_before_min_length[:, eos_token_id].flatten().tolist(), expected_eos_scores_before_min_length
|
|
)
|
|
|
|
# check that min new length is applied at length 6 (because it has only 1 new token)
|
|
input_ids = ids_tensor((batch_size, 6), vocab_size=20)
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
scores_before_min_length = new_min_dist_processor(input_ids, scores)
|
|
self.assertListEqual(
|
|
scores_before_min_length[:, eos_token_id].flatten().tolist(), expected_eos_scores_before_min_length
|
|
)
|
|
|
|
# check that min new length is applied at length 7 (because it has only 2 new tokens)
|
|
input_ids = ids_tensor((batch_size, 7), vocab_size=20)
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
scores_before_min_length = new_min_dist_processor(input_ids, scores)
|
|
self.assertListEqual(
|
|
scores_before_min_length[:, eos_token_id].flatten().tolist(), expected_eos_scores_before_min_length
|
|
)
|
|
|
|
# check that min new length is not applied anymore at length 8
|
|
input_ids = ids_tensor((batch_size, 8), vocab_size=20)
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
scores_before_min_length = new_min_dist_processor(input_ids, scores)
|
|
self.assertFalse(torch.isinf(scores_before_min_length).any())
|
|
|
|
# check that min new length is not applied anymore at length 15
|
|
input_ids = ids_tensor((batch_size, 15), vocab_size=20)
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
scores_before_min_length = new_min_dist_processor(input_ids, scores)
|
|
self.assertFalse(torch.isinf(scores_before_min_length).any())
|
|
|
|
def test_temperature_dist_warper(self):
|
|
input_ids = None
|
|
length = 20
|
|
|
|
scores = self._get_uniform_logits(batch_size=2, length=length)
|
|
|
|
# tweak scores to not be uniform anymore
|
|
scores[1, 5] = (1 / length) + 0.1 # peak, 1st batch
|
|
scores[1, 10] = (1 / length) - 0.4 # valley, 1st batch
|
|
|
|
# compute softmax
|
|
probs = nn.functional.softmax(scores, dim=-1)
|
|
|
|
temp_dist_warper_sharper = TemperatureLogitsWarper(temperature=0.5)
|
|
temp_dist_warper_smoother = TemperatureLogitsWarper(temperature=1.3)
|
|
|
|
warped_prob_sharp = nn.functional.softmax(temp_dist_warper_sharper(input_ids, scores), dim=-1)
|
|
warped_prob_smooth = nn.functional.softmax(temp_dist_warper_smoother(input_ids, scores), dim=-1)
|
|
processed_scores = temp_dist_warper_smoother(input_ids, scores)
|
|
|
|
# uniform distribution stays uniform
|
|
torch.testing.assert_close(probs[0, :], warped_prob_sharp[0, :], rtol=1e-3, atol=1e-3)
|
|
torch.testing.assert_close(probs[0, :], warped_prob_smooth[0, :], rtol=1e-3, atol=1e-3)
|
|
|
|
# sharp peaks get higher, valleys get lower
|
|
self.assertLess(probs[1, :].max(), warped_prob_sharp[1, :].max())
|
|
self.assertGreater(probs[1, :].min(), warped_prob_sharp[1, :].min())
|
|
|
|
# smooth peaks get lower, valleys get higher
|
|
self.assertGreater(probs[1, :].max(), warped_prob_smooth[1, :].max())
|
|
self.assertLess(probs[1, :].min(), warped_prob_smooth[1, :].min())
|
|
|
|
# processor should not change logits in-place
|
|
self.assertFalse(torch.all(scores == processed_scores))
|
|
|
|
def test_repetition_penalty_dist_process(self):
|
|
input_ids = torch.tensor([[0, 1], [5, 0]], device=torch_device, dtype=torch.long)
|
|
vocab_size = 10
|
|
|
|
scores = self._get_uniform_logits(batch_size=2, length=vocab_size)
|
|
|
|
# give values special values
|
|
scores[0, 0] = -(1 / vocab_size)
|
|
scores[1, 5] = 4 / vocab_size
|
|
|
|
rep_penalty_proc = RepetitionPenaltyLogitsProcessor(penalty=2.0)
|
|
|
|
processed_scores = rep_penalty_proc(input_ids, scores)
|
|
|
|
# check that values were correctly changed
|
|
self.assertAlmostEqual(processed_scores[0, 0].item(), -(1 / vocab_size) * 2)
|
|
self.assertAlmostEqual(processed_scores[0, 1].item(), (1 / vocab_size) / 2)
|
|
|
|
self.assertAlmostEqual(processed_scores[1, 0].item(), (1 / vocab_size) / 2)
|
|
self.assertAlmostEqual(processed_scores[1, 5].item(), (4 / vocab_size) / 2)
|
|
|
|
# processor should not change logits in-place
|
|
self.assertFalse(torch.all(scores == processed_scores))
|
|
|
|
def test_repetition_penalty_dist_process_exclusion_no_new_input_ids(self):
|
|
input_ids = torch.tensor([[0, 1], [5, 0]], device=torch_device, dtype=torch.long)
|
|
vocab_size = 10
|
|
|
|
scores = self._get_uniform_logits(batch_size=2, length=vocab_size)
|
|
|
|
# give values special values
|
|
scores[0, 0] = -(1 / vocab_size)
|
|
scores[1, 5] = 4 / vocab_size
|
|
|
|
rep_penalty_proc = RepetitionPenaltyLogitsProcessor(
|
|
penalty=2.0,
|
|
prompt_ignore_length=input_ids.shape[-1],
|
|
)
|
|
|
|
processed_scores = rep_penalty_proc(input_ids, scores)
|
|
|
|
# Because input IDs were provided & we call with the same input
|
|
# IDs that we initialize with, it should be the same as calling
|
|
# with no input IDs, so no scores should be penalized.
|
|
self.assertTrue(torch.all(scores == processed_scores))
|
|
|
|
def test_repetition_penalty_dist_process_exclusion_with_new_input_ids(self):
|
|
orig_input_ids = torch.tensor([[0, 1], [5, 0]], device=torch_device, dtype=torch.long)
|
|
curr_input_ids = torch.tensor([[0, 1, 0, 1], [5, 0, 5, 0]], device=torch_device, dtype=torch.long)
|
|
vocab_size = 10
|
|
|
|
scores = self._get_uniform_logits(batch_size=2, length=vocab_size)
|
|
|
|
# give values special values
|
|
scores[0, 0] = -(1 / vocab_size)
|
|
scores[1, 5] = 4 / vocab_size
|
|
|
|
rep_penalty_proc = RepetitionPenaltyLogitsProcessor(
|
|
penalty=2.0,
|
|
prompt_ignore_length=orig_input_ids.shape[-1],
|
|
)
|
|
|
|
processed_scores = rep_penalty_proc(curr_input_ids, scores)
|
|
|
|
# check that values were correctly changed
|
|
self.assertAlmostEqual(processed_scores[0, 0].item(), -(1 / vocab_size) * 2)
|
|
self.assertAlmostEqual(processed_scores[0, 1].item(), (1 / vocab_size) / 2)
|
|
|
|
self.assertAlmostEqual(processed_scores[1, 0].item(), (1 / vocab_size) / 2)
|
|
self.assertAlmostEqual(processed_scores[1, 5].item(), (4 / vocab_size) / 2)
|
|
|
|
# processor should not change logits in-place
|
|
self.assertFalse(torch.all(scores == processed_scores))
|
|
|
|
def test_encoder_repetition_penalty_dist_process(self):
|
|
input_ids = torch.tensor([[0, 1], [5, 0]], device=torch_device, dtype=torch.long)
|
|
vocab_size = 10
|
|
|
|
scores = self._get_uniform_logits(batch_size=2, length=vocab_size)
|
|
|
|
# give values special values
|
|
scores[0, 0] = -(1 / vocab_size)
|
|
scores[1, 5] = 4 / vocab_size
|
|
|
|
rep_penalty_proc = EncoderRepetitionPenaltyLogitsProcessor(penalty=2.0, encoder_input_ids=input_ids)
|
|
|
|
processed_scores = rep_penalty_proc(input_ids, scores)
|
|
|
|
# check that values were correctly changed
|
|
self.assertAlmostEqual(processed_scores[0, 0].item(), -(1 / vocab_size) / 2)
|
|
self.assertAlmostEqual(processed_scores[0, 1].item(), (1 / vocab_size) * 2)
|
|
|
|
self.assertAlmostEqual(processed_scores[1, 0].item(), (1 / vocab_size) * 2)
|
|
self.assertAlmostEqual(processed_scores[1, 5].item(), (4 / vocab_size) * 2)
|
|
|
|
# check that values not in the encoder ids were NOT changed
|
|
self.assertAlmostEqual(processed_scores[0, 2].item(), (1 / vocab_size))
|
|
self.assertAlmostEqual(processed_scores[1, 2].item(), (1 / vocab_size))
|
|
|
|
# processor should not change logits in-place
|
|
self.assertFalse(torch.all(scores == processed_scores))
|
|
|
|
def test_top_k_dist_warper(self):
|
|
input_ids = None
|
|
vocab_size = 10
|
|
batch_size = 2
|
|
|
|
# create ramp distribution
|
|
ramp_logits = (
|
|
torch.arange(vocab_size, device=torch_device, dtype=torch.float).unsqueeze(0).repeat(batch_size, 1)
|
|
)
|
|
ramp_logits[1:, : vocab_size // 2] = ramp_logits[1:, : vocab_size // 2] + vocab_size
|
|
|
|
top_k_warp = TopKLogitsWarper(3)
|
|
|
|
scores = top_k_warp(input_ids, ramp_logits)
|
|
|
|
# check that correct tokens are filtered
|
|
self.assertListEqual(torch.isinf(scores[0]).tolist(), 7 * [True] + 3 * [False])
|
|
self.assertListEqual(torch.isinf(scores[1]).tolist(), 2 * [True] + 3 * [False] + 5 * [True])
|
|
|
|
# processor should not change logits in-place
|
|
self.assertFalse(torch.all(scores == ramp_logits))
|
|
|
|
# check special cases
|
|
length = 5
|
|
|
|
logits = self._get_uniform_logits(batch_size=batch_size, length=length)
|
|
top_k_warp_safety_check = TopKLogitsWarper(top_k=1, filter_value=0.0, min_tokens_to_keep=3)
|
|
|
|
scores = top_k_warp_safety_check(input_ids, logits)
|
|
# uniform dist is not changed
|
|
self.assertListEqual((scores == 0.0).to(torch.long).sum(dim=-1).tolist(), [0, 0])
|
|
|
|
ramp_logits = torch.arange(length, device=torch_device, dtype=torch.float).unsqueeze(0).repeat(batch_size, 1)
|
|
scores = top_k_warp_safety_check(input_ids, ramp_logits)
|
|
|
|
# min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified
|
|
self.assertListEqual((scores == 0.0).to(torch.long).sum(dim=-1).tolist(), [2, 2])
|
|
|
|
def test_top_p_dist_warper(self):
|
|
input_ids = None
|
|
vocab_size = 10
|
|
batch_size = 2
|
|
|
|
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
|
|
dist = torch.log(
|
|
torch.tensor([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]], device=torch_device, dtype=torch.float)
|
|
)
|
|
|
|
top_p_warp = TopPLogitsWarper(0.8)
|
|
filtered_dist = torch.exp(top_p_warp(input_ids, dist))
|
|
|
|
# dist should be filtered to keep min num values so that sum is >= top_p
|
|
# exp (-inf) => 0
|
|
EXPECTED_FILTERED_DIST = torch.tensor(
|
|
[[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]], device=torch_device, dtype=torch.float
|
|
)
|
|
torch.testing.assert_close(filtered_dist, EXPECTED_FILTERED_DIST, rtol=1e-3, atol=1e-3)
|
|
|
|
# processor should not change logits in-place
|
|
self.assertFalse(torch.all(top_p_warp(input_ids, dist) == dist))
|
|
|
|
# check edge cases with negative and extreme logits
|
|
ramp_logits = torch.arange(vocab_size, device=torch_device, dtype=torch.float).unsqueeze(0).repeat(
|
|
batch_size, 1
|
|
) - (vocab_size // 2)
|
|
|
|
# make ramp_logits more extreme
|
|
ramp_logits[1] = ramp_logits[1] * 100.0
|
|
|
|
# make sure at least 2 tokens are kept
|
|
top_p_warp = TopPLogitsWarper(0.9, min_tokens_to_keep=2, filter_value=0.0)
|
|
filtered_dist = top_p_warp(input_ids, ramp_logits)
|
|
|
|
# first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
|
|
self.assertListEqual((filtered_dist != 0.0).to(torch.long).sum(dim=-1).tolist(), [3, 2])
|
|
|
|
def test_min_p_dist_warper(self):
|
|
input_ids = None
|
|
vocab_size = 10
|
|
batch_size = 2
|
|
|
|
# create distribution and take log (inverse to Softmax as taken in MinPLogitsWarper)
|
|
dist = torch.log(
|
|
torch.tensor(
|
|
[
|
|
[0.9, 0.0274, 0.047, 0.0274], # two tokens should be kept (0.047 > 0.9*0.05=0.045)
|
|
[0.15, 0.3, 0.3, 0.25], # all should be kept -- no high-probability token
|
|
[0.97, 0.01, 0.01, 0.01], # only the first token should be kept
|
|
],
|
|
device=torch_device,
|
|
dtype=torch.float,
|
|
)
|
|
)
|
|
|
|
min_p_warp = MinPLogitsWarper(0.05)
|
|
filtered_dist = torch.exp(min_p_warp(input_ids, dist))
|
|
|
|
# exp (-inf) => 0
|
|
EXPECTED_FILTERED_DIST = torch.tensor(
|
|
[[0.9, 0.0, 0.047, 0.0], [0.15, 0.3, 0.3, 0.25], [0.97, 0.0, 0.0, 0.0]],
|
|
device=torch_device,
|
|
dtype=torch.float,
|
|
)
|
|
torch.testing.assert_close(filtered_dist, EXPECTED_FILTERED_DIST, rtol=1e-3, atol=1e-3)
|
|
|
|
# processor should not change logits in-place
|
|
self.assertFalse(torch.all(min_p_warp(input_ids, dist) == dist))
|
|
|
|
# check edge cases with negative and extreme logits
|
|
ramp_logits = torch.arange(vocab_size, device=torch_device, dtype=torch.float) - (vocab_size // 2)
|
|
ramp_logits = ramp_logits.unsqueeze(0).repeat(batch_size, 1)
|
|
|
|
# make ramp_logits more extreme
|
|
ramp_logits[1] = ramp_logits[1] * 100.0
|
|
|
|
# make sure at least 2 tokens are kept
|
|
min_p_warp = MinPLogitsWarper(0.9, min_tokens_to_keep=2, filter_value=0.0)
|
|
filtered_dist = min_p_warp(input_ids, ramp_logits)
|
|
|
|
# first batch should keep two tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
|
|
self.assertListEqual((filtered_dist != 0.0).to(torch.long).sum(dim=-1).tolist(), [2, 2])
|
|
|
|
def test_typical_dist_warper(self):
|
|
input_ids = None
|
|
vocab_size = 10
|
|
batch_size = 2
|
|
|
|
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
|
|
dist = torch.log(
|
|
torch.tensor([[0.97, 0.01, 0.01, 0.01], [0.4, 0.2, 0.2, 0.2]], device=torch_device, dtype=torch.float)
|
|
)
|
|
|
|
typical_warp = TypicalLogitsWarper(0.5)
|
|
filtered_dist = torch.exp(typical_warp(input_ids, dist))
|
|
|
|
# dist should be filtered to keep min num values so that sum is >= 0.7
|
|
# exp (-inf) => 0
|
|
EXPECTED_FILTERED_DIST = torch.tensor(
|
|
[[0.97, 0.0, 0.0, 0.0], [0.0, 0.2, 0.2, 0.2]], device=torch_device, dtype=torch.float
|
|
)
|
|
torch.testing.assert_close(filtered_dist, EXPECTED_FILTERED_DIST, rtol=1e-3, atol=1e-3)
|
|
|
|
# processor should not change logits in-place
|
|
self.assertFalse(torch.all(typical_warp(input_ids, dist) == dist))
|
|
|
|
# check special cases
|
|
length = 5
|
|
|
|
logits = self._get_uniform_logits(batch_size=batch_size, length=length)
|
|
typical_warp_safety_check = TypicalLogitsWarper(mass=0.5, filter_value=0.0, min_tokens_to_keep=3)
|
|
|
|
scores = typical_warp_safety_check(input_ids, logits)
|
|
# uniform dist is not changed
|
|
self.assertListEqual((scores == 0.0).to(torch.long).sum(dim=-1).tolist(), [0, 0])
|
|
|
|
# check edge cases with negative and extreme logits
|
|
ramp_logits = torch.arange(vocab_size, device=torch_device, dtype=torch.float).unsqueeze(0).repeat(
|
|
batch_size, 1
|
|
) - (vocab_size // 2)
|
|
|
|
# make ramp_logits more extreme
|
|
ramp_logits[1] = ramp_logits[1] * 100.0
|
|
|
|
# make sure at least 2 tokens are kept
|
|
typical_warp = TypicalLogitsWarper(0.7, min_tokens_to_keep=2, filter_value=0.0)
|
|
filtered_dist = typical_warp(input_ids, ramp_logits)
|
|
|
|
# first batch should keep two tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
|
|
self.assertListEqual((filtered_dist != 0.0).to(torch.long).sum(dim=-1).tolist(), [2, 2])
|
|
|
|
def test_epsilon_dist_warper(self):
|
|
input_ids = None
|
|
vocab_size = 10
|
|
batch_size = 2
|
|
|
|
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
|
|
dist = torch.log(
|
|
torch.tensor(
|
|
[[0.87, 0.099, 0.001, 0.03], [0.4, 0.299, 0.101, 0.2]], device=torch_device, dtype=torch.float
|
|
)
|
|
)
|
|
|
|
epsilon_warp = EpsilonLogitsWarper(0.1)
|
|
filtered_dist = torch.exp(epsilon_warp(input_ids, dist))
|
|
|
|
# dist should be filtered to only keep values with proba >= 0.1
|
|
# exp (-inf) => 0
|
|
EXPECTED_FILTERED_DIST = torch.tensor(
|
|
[[0.87, 0, 0, 0], [0.4, 0.299, 0.101, 0.2]], device=torch_device, dtype=torch.float
|
|
)
|
|
torch.testing.assert_close(filtered_dist, EXPECTED_FILTERED_DIST, rtol=1e-3, atol=1e-3)
|
|
|
|
# processor should not change logits in-place
|
|
self.assertFalse(torch.all(epsilon_warp(input_ids, dist) == dist))
|
|
|
|
# check edge cases with negative and extreme logits
|
|
ramp_logits = torch.arange(vocab_size, device=torch_device, dtype=torch.float).unsqueeze(0).repeat(
|
|
batch_size, 1
|
|
) - (vocab_size // 2)
|
|
|
|
# make ramp_logits more extreme
|
|
ramp_logits[1] = ramp_logits[1] * 100.0
|
|
|
|
# make sure at least 2 tokens are kept
|
|
epsilon_warp = EpsilonLogitsWarper(5e-2, min_tokens_to_keep=2, filter_value=0.0)
|
|
filtered_dist = epsilon_warp(input_ids, ramp_logits)
|
|
|
|
# first batch should keep 3 tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
|
|
self.assertListEqual((filtered_dist != 0.0).to(torch.long).sum(dim=-1).tolist(), [3, 2])
|
|
|
|
def test_eta_dist_warper(self):
|
|
input_ids = None
|
|
vocab_size = 10
|
|
batch_size = 2
|
|
|
|
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
|
|
dist = torch.log(
|
|
torch.tensor([[0.0, 0.1, 0.8, 0.1], [0.01, 0.04, 0.9, 0.05]], device=torch_device, dtype=torch.float)
|
|
)
|
|
|
|
eta_warp = EtaLogitsWarper(0.0625, device=torch_device)
|
|
filtered_dist = torch.exp(eta_warp(input_ids, dist))
|
|
|
|
# dist should be filtered to only keep values with proba >= min(0.0625, sqrt(0.0625) * e^-H(p))
|
|
# min(0.0625, 0.1320) is the cutoff for the first row and min(0.0625, 0.1644) is for the second
|
|
# where H is the entropy function and p is the probability vector.
|
|
# exp (-inf) => 0
|
|
EXPECTED_FILTERED_DIST = torch.tensor(
|
|
[[0.0, 0.1, 0.8, 0.1], [0.0, 0.0, 0.9, 0.0]], device=torch_device, dtype=torch.float
|
|
)
|
|
torch.testing.assert_close(filtered_dist, EXPECTED_FILTERED_DIST, rtol=1e-3, atol=1e-3)
|
|
|
|
# processor should not change logits in-place
|
|
self.assertFalse(torch.all(eta_warp(input_ids, dist) == dist))
|
|
|
|
# check edge cases with negative and extreme logits
|
|
ramp_logits = torch.arange(vocab_size, device=torch_device, dtype=torch.float).unsqueeze(0).repeat(
|
|
batch_size, 1
|
|
) - (vocab_size // 2)
|
|
|
|
# make ramp_logits more extreme
|
|
ramp_logits[1] = ramp_logits[1] * 100.0
|
|
|
|
# make sure at least 2 tokens are kept
|
|
eta_warp = EtaLogitsWarper(0.1, min_tokens_to_keep=2, filter_value=0.0, device=torch_device)
|
|
filtered_dist = eta_warp(input_ids, ramp_logits)
|
|
|
|
# first batch should keep 2 tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
|
|
self.assertListEqual((filtered_dist != 0.0).to(torch.long).sum(dim=-1).tolist(), [2, 2])
|
|
|
|
def test_no_repeat_ngram_dist_processor(self):
|
|
vocab_size = 3
|
|
batch_size = 2
|
|
|
|
input_ids = torch.tensor([[1, 1, 2, 1], [0, 1, 0, 1]], device=torch_device, dtype=torch.long)
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
|
|
no_repeat_proc_2_gram = NoRepeatNGramLogitsProcessor(2)
|
|
no_repeat_proc_3_gram = NoRepeatNGramLogitsProcessor(3)
|
|
|
|
filtered_scores_2_gram = no_repeat_proc_2_gram(input_ids, scores)
|
|
filtered_scores_3_gram = no_repeat_proc_3_gram(input_ids, scores)
|
|
|
|
# 2-gram would forbid 2nd and 3rd token (1,2) at 1st batch and 1st token (0) at 2nd batch
|
|
self.assertListEqual(torch.isinf(filtered_scores_2_gram).tolist(), [[False, True, True], [True, False, False]])
|
|
|
|
# 3-gram would forbid no token at 1st batch and 1st token (0) at 2nd batch
|
|
self.assertListEqual(
|
|
torch.isinf(filtered_scores_3_gram).tolist(), [[False, False, False], [True, False, False]]
|
|
)
|
|
|
|
# processor should not change logits in-place
|
|
self.assertFalse(torch.all(scores == filtered_scores_2_gram))
|
|
self.assertFalse(torch.all(scores == filtered_scores_3_gram))
|
|
|
|
def test_encoder_no_repeat_ngram_dist_processor(self):
|
|
vocab_size = 3
|
|
num_beams = 2
|
|
batch_size = 1
|
|
|
|
encoder_input_ids = torch.tensor([1, 2, 1, 1], device=torch_device, dtype=torch.long)
|
|
|
|
input_ids = torch.tensor([[1, 2, 1], [8, 0, 2]], device=torch_device, dtype=torch.long)
|
|
scores = self._get_uniform_logits(batch_size * num_beams, vocab_size)
|
|
|
|
no_repeat_proc_2_gram = EncoderNoRepeatNGramLogitsProcessor(2, encoder_input_ids=encoder_input_ids)
|
|
no_repeat_proc_3_gram = EncoderNoRepeatNGramLogitsProcessor(3, encoder_input_ids=encoder_input_ids)
|
|
|
|
filtered_scores_2_gram = no_repeat_proc_2_gram(input_ids, scores)
|
|
filtered_scores_3_gram = no_repeat_proc_3_gram(input_ids, scores)
|
|
|
|
# 2-gram would forbid 1st and 2nd token at 1st beam and 1st token (0) at 2nd beam
|
|
self.assertListEqual(torch.isinf(filtered_scores_2_gram).tolist(), [[False, True, True], [False, True, False]])
|
|
|
|
# 3-gram would forbid 1st token at 1st beam and no token at 2nd beam
|
|
self.assertListEqual(
|
|
torch.isinf(filtered_scores_3_gram).tolist(), [[False, True, False], [False, False, False]]
|
|
)
|
|
|
|
# processor should not change logits in-place
|
|
self.assertFalse(torch.all(scores == filtered_scores_2_gram))
|
|
self.assertFalse(torch.all(scores == filtered_scores_3_gram))
|
|
|
|
# Batched input
|
|
vocab_size = 3
|
|
num_beams = 2
|
|
batch_size = 2
|
|
encoder_input_ids = torch.tensor([[1, 2, 1, 1], [0, 0, 2, 1]], device=torch_device, dtype=torch.long)
|
|
|
|
input_ids = torch.tensor([[1, 2, 1], [1, 0, 2], [0, 0, 0], [0, 2, 2]], device=torch_device, dtype=torch.long)
|
|
scores = self._get_uniform_logits(batch_size * num_beams, vocab_size)
|
|
|
|
no_repeat_proc_2_gram = EncoderNoRepeatNGramLogitsProcessor(2, encoder_input_ids=encoder_input_ids)
|
|
no_repeat_proc_3_gram = EncoderNoRepeatNGramLogitsProcessor(3, encoder_input_ids=encoder_input_ids)
|
|
|
|
filtered_scores_2_gram = no_repeat_proc_2_gram(input_ids, scores.clone())
|
|
filtered_scores_3_gram = no_repeat_proc_3_gram(input_ids, scores.clone())
|
|
|
|
# 2gram
|
|
# Batch 1
|
|
# - Beam 1: tokens (1, 2) forbidden
|
|
# - Beam 2: tokens (1) forbidden
|
|
# Batch 2
|
|
# - Beam 1: tokens (0, 2) forbidden
|
|
# - Beam 2: tokens (1) forbidden
|
|
self.assertListEqual(
|
|
torch.isinf(filtered_scores_2_gram).tolist(),
|
|
[[False, True, True], [False, True, False], [True, False, True], [False, True, False]],
|
|
)
|
|
|
|
# Batch 1
|
|
# - Beam 1: tokens (1) forbidden
|
|
# - Beam 2: tokens () forbidden
|
|
# Batch 2
|
|
# - Beam 1: tokens (2) forbidden
|
|
# - Beam 2: tokens () forbidden
|
|
self.assertListEqual(
|
|
torch.isinf(filtered_scores_3_gram).tolist(),
|
|
[[False, True, False], [False, False, False], [False, False, True], [False, False, False]],
|
|
)
|
|
|
|
def test_no_bad_words_dist_processor(self):
|
|
vocab_size = 5
|
|
batch_size = 2
|
|
eos_token_id = 4
|
|
|
|
input_ids = torch.tensor([[0, 1, 3, 1], [0, 1, 0, 1]], device=torch_device, dtype=torch.long)
|
|
bad_word_tokens = [[1], [4], [1, 0], [0, 1, 2], [1, 3, 1, 3]]
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
|
|
no_bad_words_dist_proc = NoBadWordsLogitsProcessor(bad_words_ids=bad_word_tokens, eos_token_id=eos_token_id)
|
|
|
|
filtered_scores = no_bad_words_dist_proc(input_ids, scores)
|
|
|
|
# batch 1: 1st, 2nd, and 4th (0, 1, 3) token are forbidden
|
|
# batch 2: 1st, 2nd, and 3rd (0, 1, 2) token are forbidden
|
|
# Note that 5th element cannot be forbidden as it is EOS token
|
|
self.assertListEqual(
|
|
torch.isinf(filtered_scores).tolist(), [[True, True, False, True, False], [True, True, True, False, False]]
|
|
)
|
|
|
|
# processor should not change logits in-place
|
|
self.assertFalse(torch.all(scores == filtered_scores))
|
|
|
|
# check edge case
|
|
no_bad_words_dist_proc = NoBadWordsLogitsProcessor(bad_words_ids=[[4]], eos_token_id=eos_token_id)
|
|
filtered_scores = no_bad_words_dist_proc(input_ids, scores)
|
|
torch.testing.assert_close(scores, filtered_scores, rtol=1e-3, atol=1e-3)
|
|
|
|
def test_bias_dist_processor(self):
|
|
vocab_size = 5
|
|
batch_size = 2
|
|
|
|
input_ids = torch.tensor([[0, 1, 3, 1], [0, 1, 0, 1]], device=torch_device, dtype=torch.long)
|
|
positive_bias = {(1,): 100.0, (4,): 100.0}
|
|
negative_bias = {(1, 0): -100.0, (0, 1, 2): -100.0, (1, 3, 1, 3): -100.0}
|
|
# biases the same termination twice, to ensure we can handle overlapping terminations (it won't have an effect
|
|
# on the test cases, though)
|
|
negative_bias.update({(1, 3, 1, 3, 1, 3): -100.0})
|
|
sequence_bias = {**positive_bias, **negative_bias}
|
|
|
|
# scores = 0 to facilitate checks
|
|
scores = torch.zeros((batch_size, vocab_size), dtype=torch.float, device=torch_device)
|
|
|
|
bias_dist_proc = SequenceBiasLogitsProcessor(sequence_bias=sequence_bias)
|
|
filtered_scores = bias_dist_proc(input_ids, scores)
|
|
|
|
# batch 1: positive bias: tokens (1, 4); negative bias: tokens (0, 3); neutral: tokens (2)
|
|
# batch 2: positive bias: tokens (1, 4); negative bias: tokens (0, 2); neutral: tokens (3)
|
|
self.assertListEqual(
|
|
filtered_scores.tolist(), [[-100.0, 100.0, 0.0, -100.0, 100.0], [-100.0, 100.0, -100.0, 0.0, 100.0]]
|
|
)
|
|
|
|
# processor should not change logits in-place
|
|
self.assertFalse(torch.all(scores == filtered_scores))
|
|
|
|
def test_processor_list(self):
|
|
batch_size = 4
|
|
sequence_length = 10
|
|
vocab_size = 15
|
|
eos_token_id = 0
|
|
|
|
# dummy input_ids and scores
|
|
input_ids = ids_tensor((batch_size, sequence_length), vocab_size)
|
|
input_ids_comp = input_ids.clone()
|
|
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
scores_comp = scores.clone()
|
|
|
|
# instantiate all dist processors
|
|
min_dist_proc = MinLengthLogitsProcessor(min_length=10, eos_token_id=eos_token_id, device=torch_device)
|
|
temp_dist_warp = TemperatureLogitsWarper(temperature=0.5)
|
|
rep_penalty_proc = RepetitionPenaltyLogitsProcessor(penalty=2.0)
|
|
top_k_warp = TopKLogitsWarper(3)
|
|
top_p_warp = TopPLogitsWarper(0.8)
|
|
no_repeat_proc = NoRepeatNGramLogitsProcessor(2)
|
|
no_bad_words_dist_proc = NoBadWordsLogitsProcessor(bad_words_ids=[[1]], eos_token_id=eos_token_id)
|
|
|
|
# no processor list
|
|
scores = min_dist_proc(input_ids, scores)
|
|
scores = temp_dist_warp(input_ids, scores)
|
|
scores = rep_penalty_proc(input_ids, scores)
|
|
scores = top_k_warp(input_ids, scores)
|
|
scores = top_p_warp(input_ids, scores)
|
|
scores = no_repeat_proc(input_ids, scores)
|
|
scores = no_bad_words_dist_proc(input_ids, scores)
|
|
|
|
# with processor list
|
|
processor = LogitsProcessorList(
|
|
[
|
|
min_dist_proc,
|
|
temp_dist_warp,
|
|
rep_penalty_proc,
|
|
top_k_warp,
|
|
top_p_warp,
|
|
no_repeat_proc,
|
|
no_bad_words_dist_proc,
|
|
]
|
|
)
|
|
scores_comp = processor(input_ids, scores_comp)
|
|
|
|
# scores should be equal
|
|
torch.testing.assert_close(scores, scores_comp, rtol=1e-3, atol=1e-3)
|
|
|
|
# input_ids should never be changed
|
|
self.assertListEqual(input_ids.tolist(), input_ids_comp.tolist())
|
|
|
|
def test_prefix_constrained_logits_processor(self):
|
|
vocab_size = 5
|
|
batch_size = 2
|
|
|
|
input_ids = torch.tensor([[0, 1, 3, 1], [0, 1, 0, 1]], device=torch_device, dtype=torch.long)
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
|
|
def prefix_allowed_tokens_fn(batch_id, inputs_ids):
|
|
return [[0, 1], [2, 3]][batch_id]
|
|
|
|
prefix_constrained_logits_proc = PrefixConstrainedLogitsProcessor(prefix_allowed_tokens_fn, 1)
|
|
|
|
filtered_scores = prefix_constrained_logits_proc(input_ids, scores)
|
|
|
|
# batch 1: 1st, 2nd (0, 1) token are allowed
|
|
# batch 2: 3rd, 4th (2, 3) token are allowed
|
|
self.assertListEqual(
|
|
torch.isinf(filtered_scores).tolist(), [[False, False, True, True, True], [True, True, False, False, True]]
|
|
)
|
|
|
|
def empty_prefix_allowed_tokens_fn(batch_id, inputs_ids):
|
|
return []
|
|
|
|
prefix_constrained_logits_proc = PrefixConstrainedLogitsProcessor(empty_prefix_allowed_tokens_fn, 1)
|
|
|
|
self.assertRaises(ValueError, prefix_constrained_logits_proc, input_ids, scores)
|
|
|
|
# processor should not change logits in-place
|
|
self.assertFalse(torch.all(scores == filtered_scores))
|
|
|
|
def test_hamming_diversity(self):
|
|
vocab_size = 4
|
|
num_beams = 2
|
|
num_beam_groups = 2
|
|
|
|
scores = self._get_uniform_logits(num_beams, vocab_size)
|
|
# batch_idx = 0 -> index batch_idx * num_beam_groups -> idx = 0 * 2 = 0 -> penalises tokens 1
|
|
# batch_idx = 1 -> index batch_idx * num_beam_groups -> idx = 1 * 2 = 2 -> penalises tokens 1
|
|
current_tokens = torch.tensor([0, 3, 1, 2], device=torch_device, dtype=torch.long)
|
|
|
|
diversity_logits_processor = HammingDiversityLogitsProcessor(
|
|
diversity_penalty=1.0, num_beams=num_beams, num_beam_groups=num_beam_groups
|
|
)
|
|
|
|
processed_scores = diversity_logits_processor(None, scores, current_tokens, 1)
|
|
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
processed_scores[0], torch.tensor([-0.7500, 0.2500, 0.2500, 0.2500], device=torch_device), atol=1e-3
|
|
)
|
|
)
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
processed_scores[1], torch.tensor([0.2500, -0.7500, 0.2500, 0.2500], device=torch_device), atol=1e-3
|
|
)
|
|
)
|
|
|
|
# processor should not change logits in-place
|
|
self.assertFalse(torch.all(scores == processed_scores))
|
|
|
|
def test_forced_bos_token_logits_processor(self):
|
|
vocab_size = 20
|
|
batch_size = 4
|
|
bos_token_id = 0
|
|
|
|
logits_processor = ForcedBOSTokenLogitsProcessor(bos_token_id=bos_token_id)
|
|
|
|
# check that all scores are -inf except the bos_token_id score
|
|
input_ids = ids_tensor((batch_size, 1), vocab_size=20)
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
processed_scores = logits_processor(input_ids, scores)
|
|
self.assertTrue(torch.isneginf(processed_scores[:, bos_token_id + 1 :]).all())
|
|
# score for bos_token_id should be zero
|
|
self.assertListEqual(processed_scores[:, bos_token_id].tolist(), 4 * [0])
|
|
|
|
# processor should not change logits in-place
|
|
self.assertFalse(torch.all(scores == processed_scores))
|
|
|
|
# check that bos_token_id is not forced if current length is greater than 1
|
|
input_ids = ids_tensor((batch_size, 4), vocab_size=20)
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
processed_scores = logits_processor(input_ids, scores)
|
|
self.assertFalse(torch.isinf(processed_scores).any())
|
|
|
|
def test_forced_eos_token_logits_processor(self):
|
|
vocab_size = 20
|
|
batch_size = 4
|
|
eos_token_id = 0
|
|
max_length = 5
|
|
|
|
logits_processor = ForcedEOSTokenLogitsProcessor(
|
|
max_length=max_length, eos_token_id=eos_token_id, device=torch_device
|
|
)
|
|
|
|
# check that all scores are -inf except the eos_token_id when max_length-1 is reached
|
|
input_ids = ids_tensor((batch_size, 4), vocab_size=20)
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
processed_scores = logits_processor(input_ids, scores)
|
|
self.assertTrue(torch.isneginf(processed_scores[:, eos_token_id + 1 :]).all())
|
|
# score for eos_token_id should be zero
|
|
self.assertListEqual(processed_scores[:, eos_token_id].tolist(), 4 * [0])
|
|
|
|
# processor should not change logits in-place
|
|
self.assertFalse(torch.all(scores == processed_scores))
|
|
|
|
# check that eos_token_id is not forced if max_length-1 is not reached
|
|
input_ids = ids_tensor((batch_size, 3), vocab_size=20)
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
processed_scores = logits_processor(input_ids, scores)
|
|
self.assertFalse(torch.isinf(processed_scores).any())
|
|
|
|
def test_remove_nan_inf_logits_processor(self):
|
|
scores = torch.tensor(
|
|
[[0.0, 0.7, 0.8, float("nan")], [0.1, float("inf"), 0.3, float("-inf")]], device=torch_device
|
|
)
|
|
input_ids = ids_tensor((2, 4), vocab_size=20)
|
|
|
|
logits_processor = InfNanRemoveLogitsProcessor()
|
|
|
|
processed_scores = logits_processor(input_ids, scores)
|
|
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
processed_scores,
|
|
torch.tensor(
|
|
[
|
|
[0.0, 0.7, 0.8, 0.0],
|
|
[0.1, torch.finfo(processed_scores.dtype).max, 0.3, torch.finfo(processed_scores.dtype).min],
|
|
],
|
|
device=torch_device,
|
|
),
|
|
atol=1e-6,
|
|
)
|
|
)
|
|
|
|
# processor should not change logits in-place
|
|
self.assertFalse(torch.all(scores == processed_scores))
|
|
|
|
def test_exponential_decay_length_penalty(self):
|
|
vocab_size = 20
|
|
batch_size = 4
|
|
eos_token_id = 0
|
|
|
|
penalty_start = 5
|
|
penalty_factor = 1.1
|
|
|
|
input_ids = ids_tensor((batch_size, 2), vocab_size=vocab_size)
|
|
input_ids_seq_length = input_ids.shape[-1]
|
|
|
|
length_decay_processor = ExponentialDecayLengthPenalty(
|
|
exponential_decay_length_penalty=(penalty_start, penalty_factor),
|
|
eos_token_id=eos_token_id,
|
|
input_ids_seq_length=input_ids_seq_length,
|
|
)
|
|
|
|
# check that penalty is not applied before start
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
scores_before_start = length_decay_processor(input_ids, scores)
|
|
self.assertListEqual(scores_before_start[:, eos_token_id].tolist(), scores[:, eos_token_id].tolist())
|
|
|
|
# check that penalty is applied after start
|
|
input_ids = ids_tensor((batch_size, 20), vocab_size=vocab_size)
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
scores_after_start = length_decay_processor(input_ids, scores)
|
|
self.assertTrue(torch.gt(scores_after_start[:, eos_token_id], scores[:, eos_token_id]).all())
|
|
|
|
# check the penalty increases negative scores
|
|
input_ids = ids_tensor((batch_size, 20), vocab_size=vocab_size)
|
|
scores = torch.neg(self._get_uniform_logits(batch_size, vocab_size))
|
|
scores_after_start = length_decay_processor(input_ids, scores)
|
|
self.assertTrue(torch.gt(scores_after_start[:, eos_token_id], scores[:, eos_token_id]).all())
|
|
|
|
# processor should not change logits in-place
|
|
self.assertFalse(torch.all(scores == scores_after_start))
|
|
|
|
def test_normalization(self):
|
|
input_ids = None
|
|
|
|
scores = torch.tensor(
|
|
[[-23.18, -29.96, -43.54, 47.77], [-33.58, -26.87, -32.96, 22.51]], device=torch_device, dtype=torch.float
|
|
)
|
|
|
|
logit_normalization = LogitNormalization()
|
|
normalized_scores = logit_normalization(input_ids, scores).exp()
|
|
|
|
ones = torch.ones(scores.shape[0], device=torch_device, dtype=torch.float)
|
|
self.assertTrue(normalized_scores.sum(dim=-1).allclose(ones))
|
|
|
|
self.assertTrue(normalized_scores.allclose(scores.softmax(dim=-1)))
|
|
|
|
# processor should not change logits in-place
|
|
self.assertFalse(torch.all(scores == normalized_scores))
|
|
|
|
def test_classifier_free_guidance(self):
|
|
class Namespace(dict):
|
|
pass
|
|
|
|
logits_uncond = torch.tensor([[[1.0, 0, 1.5]]])
|
|
logits_cond = torch.tensor([[[1.0, 1.0, 1.0]]])
|
|
|
|
def dummy_model(input_ids, attention_mask, use_cache=True, past_key_values=None):
|
|
out = Namespace()
|
|
out.logits = logits_uncond
|
|
out.past_key_values = None
|
|
return out
|
|
|
|
def lsm(x):
|
|
return torch.nn.functional.log_softmax(x, dim=-1)
|
|
|
|
# explicit unconditional prompt + attention mask
|
|
input_ids = torch.LongTensor([[0]])
|
|
cfg = UnbatchedClassifierFreeGuidanceLogitsProcessor(
|
|
1.5, dummy_model, input_ids, torch.ones_like(input_ids, dtype=torch.long)
|
|
)
|
|
out = cfg(input_ids, logits_cond)[0, -1]
|
|
|
|
res = (lsm(logits_uncond) + 1.5 * (lsm(logits_cond) - lsm(logits_uncond)))[0, -1]
|
|
|
|
self.assertAlmostEqual(out[0].item(), res[0].item())
|
|
self.assertAlmostEqual(out[1].item(), res[1].item())
|
|
self.assertAlmostEqual(out[2].item(), res[2].item())
|
|
|
|
# explicit unconditional prompt
|
|
input_ids = torch.LongTensor([[0]])
|
|
cfg = UnbatchedClassifierFreeGuidanceLogitsProcessor(1.5, dummy_model, input_ids)
|
|
out = cfg(input_ids, logits_cond)[0, -1]
|
|
|
|
res = (lsm(logits_uncond) + 1.5 * (lsm(logits_cond) - lsm(logits_uncond)))[0, -1]
|
|
|
|
self.assertAlmostEqual(out[0].item(), res[0].item())
|
|
self.assertAlmostEqual(out[1].item(), res[1].item())
|
|
self.assertAlmostEqual(out[2].item(), res[2].item())
|
|
|
|
# all implicit
|
|
input_ids = torch.LongTensor([[0]])
|
|
cfg = UnbatchedClassifierFreeGuidanceLogitsProcessor(1.5, dummy_model)
|
|
out = cfg(input_ids, logits_cond)[0, -1]
|
|
|
|
res = (lsm(logits_uncond) + 1.5 * (lsm(logits_cond) - lsm(logits_uncond)))[0, -1]
|
|
|
|
self.assertAlmostEqual(out[0].item(), res[0].item())
|
|
self.assertAlmostEqual(out[1].item(), res[1].item())
|
|
self.assertAlmostEqual(out[2].item(), res[2].item())
|
|
|
|
def test_early_stop_processor(self):
|
|
input_ids = None
|
|
eos_token_id = 2
|
|
min_eos_p = 0.1 ## some small float
|
|
|
|
scores = self._get_uniform_logits(2, 4)
|
|
scores[0][eos_token_id] = -6 ## less than log(min_eos_p)
|
|
|
|
esp = BarkEosPrioritizerLogitsProcessor(eos_token_id=eos_token_id, min_eos_p=min_eos_p, device=torch_device)
|
|
actual_scores = esp(input_ids, scores)
|
|
expected_scores_list = [
|
|
scores[0].tolist(),
|
|
[float("-inf"), float("-inf"), scores[0][0], float("-inf")],
|
|
]
|
|
self.assertListEqual(actual_scores.tolist(), expected_scores_list)
|
|
|
|
def test_early_stop_processor_multi_eos(self):
|
|
input_ids = None
|
|
eos_token_id = [2, 3]
|
|
min_eos_p = 0.1 ## some small float
|
|
|
|
scores = self._get_uniform_logits(2, 4)
|
|
scores[0][eos_token_id] = -6 ## less than log(min_eos_p)
|
|
|
|
esp = BarkEosPrioritizerLogitsProcessor(eos_token_id=eos_token_id, min_eos_p=min_eos_p, device=torch_device)
|
|
actual_scores = esp(input_ids, scores)
|
|
expected_scores_list = [
|
|
scores[0].tolist(),
|
|
[float("-inf"), float("-inf"), scores[0][0], scores[0][0]],
|
|
]
|
|
self.assertListEqual(actual_scores.tolist(), expected_scores_list)
|
|
|
|
def test_watermarking_processor(self):
|
|
batch_size = 3
|
|
vocab_size = 20
|
|
|
|
input_ids = ids_tensor((batch_size, 5), vocab_size=20)
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
|
|
# raise error if incorrect seeding_scheme is passed
|
|
with self.assertRaises(ValueError):
|
|
WatermarkLogitsProcessor(vocab_size=vocab_size, device="cpu", seeding_scheme="hash")
|
|
|
|
# raise error if the greenlist_ratio in not in range (0.0, 1.0)
|
|
with self.assertRaises(ValueError):
|
|
WatermarkLogitsProcessor(vocab_size=vocab_size, device="cpu", greenlist_ratio=1.2)
|
|
|
|
watermark = WatermarkLogitsProcessor(vocab_size=vocab_size, device=input_ids.device)
|
|
|
|
# use fixed id for last token, needed for reproducibility and tests
|
|
input_ids[:, -1] = 10
|
|
scores_wo_bias = scores[:, -1].clone()
|
|
out = watermark(input_ids=input_ids, scores=scores)
|
|
greenlist_id = 3 if torch_device == "xpu" else 1
|
|
self.assertTrue((out[:, greenlist_id] == scores_wo_bias + watermark.bias).all())
|
|
|
|
@parameterized.expand([(5, 3, 10000), (10, 5, 1000)])
|
|
def test_synthidtext_watermarking_processor_bias_uniformity(self, ngram_len, num_layers, vocab_size):
|
|
"""Test SynthID watermarked distribution bias uniformity over iterations."""
|
|
torch.manual_seed(0)
|
|
np.random.seed(0)
|
|
watermarking_config = {
|
|
"ngram_len": ngram_len,
|
|
"keys": np.random.randint(low=0, high=2**16, size=(num_layers,)),
|
|
"sampling_table_size": 2**16,
|
|
"sampling_table_seed": 0,
|
|
"context_history_size": 512,
|
|
"device": torch_device,
|
|
}
|
|
batch_size = 100000
|
|
ngrams = torch.randint(
|
|
low=0,
|
|
high=vocab_size,
|
|
size=(batch_size, ngram_len),
|
|
device=torch_device,
|
|
)
|
|
|
|
logits_processor = SynthIDTextWatermarkLogitsProcessor(**watermarking_config)
|
|
g_values = logits_processor.compute_g_values(ngrams)
|
|
g_values_mean = torch.mean(torch.mean(g_values.float(), dim=0))
|
|
self.assertAlmostEqual(g_values_mean, 0.5, delta=0.01)
|
|
|
|
@parameterized.expand([(10000, 3), (1000, 20)])
|
|
def test_synthidtext_watermark_processor_bias_uniformity_across_vocab(self, vocab_size, num_layers):
|
|
"""Test SynthID watermarked distribution bias uniformity over vocabs of the model."""
|
|
batch_size = 1000
|
|
ngram_len = 5
|
|
torch.manual_seed(0)
|
|
np.random.seed(0)
|
|
watermarking_config = {
|
|
"ngram_len": ngram_len,
|
|
"keys": np.random.randint(low=0, high=2**16, size=(num_layers,)),
|
|
"sampling_table_size": 2**16,
|
|
"sampling_table_seed": 0,
|
|
"context_history_size": 512,
|
|
"device": torch_device,
|
|
}
|
|
n_minus_1_grams = torch.randint(
|
|
low=0,
|
|
high=vocab_size,
|
|
size=(batch_size, watermarking_config["ngram_len"] - 1),
|
|
device=torch_device,
|
|
)
|
|
|
|
logits_processor = SynthIDTextWatermarkLogitsProcessor(**watermarking_config)
|
|
ngram_keys, _ = logits_processor._compute_keys(
|
|
n_minus_1_grams,
|
|
torch.stack([torch.arange(vocab_size, device=torch_device) for _ in range(batch_size)]),
|
|
)
|
|
|
|
g_values = logits_processor.sample_g_values(ngram_keys)
|
|
# g_values shape should be [batch_size, vocab_size, num_layers]
|
|
g_values_mean = torch.mean(torch.mean(g_values.float(), dim=1))
|
|
self.assertAlmostEqual(g_values_mean, 0.5, delta=0.001)
|
|
|
|
@parameterized.expand([(2, "uniform"), (10, "uniform"), (2, "random"), (10, "random")])
|
|
def test_synthidtext_watermark_processor_distributional_convergence(self, vocab_size, logits_type):
|
|
"""Check if watermarked distribution converges to unwatermarked logits distribution."""
|
|
batch_size = 1500
|
|
num_keys = 1000
|
|
|
|
updated_softmaxes = 0
|
|
np.random.seed(0)
|
|
torch.manual_seed(0)
|
|
if logits_type == "uniform":
|
|
fixed_logits = torch.ones((batch_size, vocab_size), device=torch_device)
|
|
elif logits_type == "random":
|
|
fixed_logits = torch.rand(
|
|
(
|
|
1,
|
|
vocab_size,
|
|
),
|
|
device=torch_device,
|
|
)
|
|
fixed_logits = fixed_logits.repeat(batch_size, 1)
|
|
else:
|
|
raise ValueError(f"Unrecognized logits_type {logits_type}")
|
|
for _ in range(num_keys):
|
|
watermarking_config = {
|
|
"ngram_len": 5,
|
|
"keys": np.random.randint(0, 10**9, size=(1,), dtype=np.int64),
|
|
"sampling_table_size": 2**16,
|
|
"sampling_table_seed": 0,
|
|
"context_history_size": 1024,
|
|
"device": torch_device,
|
|
}
|
|
|
|
logits_processor = SynthIDTextWatermarkLogitsProcessor(**watermarking_config)
|
|
|
|
ngrams = torch.randint(
|
|
low=0,
|
|
high=vocab_size,
|
|
size=(batch_size, watermarking_config["ngram_len"]),
|
|
device=torch_device,
|
|
)
|
|
|
|
# Insert ngram-1 into logit_processor state.
|
|
for idx in range(watermarking_config["ngram_len"] - 1):
|
|
_ = logits_processor(ngrams[:, :idx], fixed_logits)
|
|
|
|
updated_scores = logits_processor(ngrams, fixed_logits)
|
|
updated_softmaxes += torch.nn.functional.softmax(updated_scores, dim=1).cpu().numpy()
|
|
|
|
updated_softmaxes = np.mean(updated_softmaxes, axis=0) / num_keys
|
|
is_close = torch.all(
|
|
torch.isclose(
|
|
torch.tensor(updated_softmaxes, device=torch_device),
|
|
torch.nn.Softmax()(fixed_logits[0]), # Take any batch entry, all are same.
|
|
atol=1e-3,
|
|
rtol=0,
|
|
)
|
|
)
|
|
self.assertTrue(is_close)
|
|
|
|
@parameterized.expand([(2, 10, 1, 0.01), (100, 5, 1, 0.01), (100, 10, 2, 0.02)])
|
|
def test_synthidtext_watermark_processor_bias_test(self, vocab_size, ngram_len, num_layers, atol):
|
|
"""Test SynthID watermarking bias matches theoretical value."""
|
|
batch_size = 20000
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
np.random.seed(0)
|
|
|
|
keys = [np.random.randint(0, 10**9) for _ in range(num_layers)]
|
|
# Use 10**9 rather than vocab_size to ensure variety in (n-1)-grams.
|
|
context = torch.randint(
|
|
low=0,
|
|
high=10**9,
|
|
size=(batch_size, ngram_len - 1),
|
|
dtype=torch.int64,
|
|
generator=generator,
|
|
device=torch_device,
|
|
)
|
|
|
|
context_history_size = 1024
|
|
logits_processor = SynthIDTextWatermarkLogitsProcessor(
|
|
ngram_len=ngram_len,
|
|
keys=keys,
|
|
sampling_table_size=2**16,
|
|
sampling_table_seed=0,
|
|
context_history_size=context_history_size,
|
|
device=torch_device,
|
|
)
|
|
|
|
scores = torch.ones(
|
|
(batch_size, vocab_size),
|
|
dtype=torch.float64,
|
|
device=torch_device,
|
|
)
|
|
# Init state of the logits processor.
|
|
logits_processor(context, scores)
|
|
# insert context into the state.
|
|
for idx in range(1, ngram_len - 1):
|
|
_ = logits_processor(context[:, :idx], scores)
|
|
|
|
updated_scores = logits_processor(context, scores)
|
|
|
|
probs = torch.nn.functional.softmax(updated_scores, dim=1)
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
next_tokens = torch.multinomial(
|
|
probs,
|
|
num_samples=1,
|
|
generator=generator,
|
|
)
|
|
|
|
ngrams = torch.concat((context, next_tokens), dim=1)
|
|
g_values = logits_processor.compute_g_values(ngrams)
|
|
mean_g_values = g_values.mean(dtype=torch.float64, dim=(0, 1))
|
|
|
|
expected_mean_g_value = logits_processor.expected_mean_g_value(
|
|
vocab_size=vocab_size,
|
|
)
|
|
is_close = torch.all(
|
|
torch.isclose(
|
|
mean_g_values,
|
|
torch.tensor(expected_mean_g_value, dtype=torch.float64, device=torch_device),
|
|
atol=atol,
|
|
rtol=0,
|
|
)
|
|
)
|
|
self.assertTrue(is_close)
|
|
|
|
def test_dia_classifier_free_guidance(self):
|
|
input_ids = torch.LongTensor([[0]])
|
|
logits_uncond = torch.tensor([[1.0, 0, 1.5]])
|
|
logits_cond = torch.tensor([[1.0, 1.0, 1.0]])
|
|
|
|
# base cfg with conditioned as center
|
|
cfg = DiaClassifierFreeGuidanceLogitsProcessor(guidance_scale=1.5)
|
|
out = cfg(input_ids, torch.cat([logits_cond, logits_uncond], dim=0))
|
|
|
|
res = logits_cond + 1.5 * (logits_cond - logits_uncond)
|
|
|
|
self.assertAlmostEqual(out[0, 0].item(), res[0, 0].item())
|
|
self.assertAlmostEqual(out[0, 1].item(), res[0, 1].item())
|
|
self.assertAlmostEqual(out[0, 2].item(), res[0, 2].item())
|
|
|
|
# additional top k (on cond logits)
|
|
cfg = DiaClassifierFreeGuidanceLogitsProcessor(guidance_scale=1.5, guidance_top_k=1)
|
|
out = cfg(input_ids, torch.cat([logits_cond, logits_uncond], dim=0))
|
|
|
|
res = logits_cond + 1.5 * (logits_cond - logits_uncond)
|
|
mask = res == res.max()
|
|
res = logits_cond.clone()
|
|
res[~mask.bool()] = -float("inf")
|
|
|
|
self.assertAlmostEqual(out[0, 0].item(), res[0, 0].item())
|
|
self.assertAlmostEqual(out[0, 1].item(), res[0, 1].item())
|
|
self.assertAlmostEqual(out[0, 2].item(), res[0, 2].item())
|
|
|
|
def test_dia_channel_filter(self):
|
|
eos = 2
|
|
bsz, channels, vocab = 2, 2, 4
|
|
|
|
input_ids = torch.LongTensor([[0]])
|
|
logits = torch.zeros(size=(bsz, channels, vocab)).view(bsz * channels, vocab)
|
|
logits[0, eos] = 1 # Eos max (forced)
|
|
logits[1, eos] = 1 # Eos max (forced) but not channel 0
|
|
|
|
channel_filter = DiaEOSChannelFilterLogitsProcessor(num_channels=channels, eos_token_id=eos)
|
|
out = channel_filter(input_ids, logits).view(bsz, channels, vocab)
|
|
|
|
for i in range(vocab):
|
|
if i > eos:
|
|
# special tokens are not to be predicted
|
|
self.assertTrue((out[:, :, i] == -float("inf")).all())
|
|
elif i == eos:
|
|
# Eos forced on channel 0
|
|
self.assertTrue(out[0, 0, i] == 1)
|
|
# Eos suppressed on everything else (even if max before)
|
|
self.assertTrue(out[0, 1, i] == -float("inf"))
|
|
self.assertTrue((out[1, :, i] == -float("inf")).all())
|
|
else:
|
|
# Eos forced on channel 0
|
|
self.assertTrue(out[0, 0, i] == -float("inf"))
|
|
# previous values
|
|
self.assertTrue(out[0, 1, i] == 0)
|
|
self.assertTrue((out[1, :, i] == 0).all())
|
|
|
|
def test_dia_delay_pattern(self):
|
|
def check_eos_logits(out, logits, batch, channel, eos):
|
|
for i in range(vocab):
|
|
if i == eos:
|
|
self.assertTrue(out[batch, channel, i] == 0)
|
|
else:
|
|
self.assertTrue(out[batch, channel, i] == -float("inf"))
|
|
|
|
for c in range(channel):
|
|
if c != channel:
|
|
self.assertTrue((out[batch, c] == logits[batch, c]).all())
|
|
|
|
eos = 2
|
|
delay_pattern = [0, 2, 3]
|
|
max_generation_len = 10
|
|
bsz, channels, vocab = 2, 3, 4
|
|
|
|
input_ids = torch.LongTensor([[0]])
|
|
logits = torch.zeros(size=(bsz, channels, vocab))
|
|
# Ensure that argmax can not result in eos
|
|
logits[:, :, eos] = -1
|
|
|
|
delay_pattern_processor = DiaEOSDelayPatternLogitsProcessor(
|
|
delay_pattern=delay_pattern, eos_token_id=eos, max_generation_len=max_generation_len
|
|
)
|
|
out = delay_pattern_processor(input_ids, logits.clone()).view(bsz, channels, vocab)
|
|
|
|
# Nothing should happen except for init of some attributes
|
|
self.assertTrue((out == logits).all())
|
|
self.assertTrue((~delay_pattern_processor.active_batches).all())
|
|
self.assertTrue(
|
|
(delay_pattern_processor.delay_pattern == torch.tensor([delay_pattern for _ in range(bsz)])).all()
|
|
)
|
|
|
|
# Make first batch end
|
|
logits[0, 0, eos] = 1
|
|
|
|
# Go through the complete delay pattern
|
|
for i in range(max(delay_pattern) + 1):
|
|
out = delay_pattern_processor(input_ids, logits.clone()).view(bsz, channels, vocab)
|
|
|
|
# no delay should kick in
|
|
if i == 1:
|
|
self.assertTrue((out == logits).all())
|
|
else:
|
|
j = i if i == 0 else i - 1
|
|
check_eos_logits(out=out, logits=logits, batch=0, channel=j, eos=eos)
|
|
self.assertTrue((out[1] == logits[1]).all())
|
|
self.assertTrue(delay_pattern_processor.active_batches[0])
|
|
self.assertFalse(delay_pattern_processor.active_batches[1])
|
|
self.assertTrue(
|
|
(
|
|
delay_pattern_processor.delay_pattern[0]
|
|
== torch.tensor([delay - (i + 1) for delay in delay_pattern])
|
|
).all()
|
|
)
|
|
self.assertTrue((delay_pattern_processor.delay_pattern[1] == torch.tensor(delay_pattern)).all())
|
|
|
|
# Make second batch end
|
|
logits[1, 0, eos] = 1
|
|
|
|
# Just to check if other batches could work
|
|
out = delay_pattern_processor(input_ids, logits.clone()).view(bsz, channels, vocab)
|
|
|
|
self.assertTrue((out[0] == logits[0]).all())
|
|
self.assertTrue(delay_pattern_processor.active_batches.all())
|
|
self.assertTrue(
|
|
(delay_pattern_processor.delay_pattern[0] == torch.tensor([delay - 5 for delay in delay_pattern])).all()
|
|
)
|
|
self.assertTrue(
|
|
(delay_pattern_processor.delay_pattern[1] == torch.tensor([delay - 1 for delay in delay_pattern])).all()
|
|
)
|
|
|
|
# Last check on max generation length reached (with delay in mind until last channel produces eos)
|
|
input_ids = torch.LongTensor([[0] * (max_generation_len - max(delay_pattern) - 1)])
|
|
delay_pattern_processor = DiaEOSDelayPatternLogitsProcessor(
|
|
delay_pattern=delay_pattern, eos_token_id=eos, max_generation_len=max_generation_len
|
|
)
|
|
out = delay_pattern_processor(input_ids, logits.clone()).view(bsz, channels, vocab)
|
|
|
|
check_eos_logits(out=out, logits=logits, batch=0, channel=0, eos=eos)
|
|
check_eos_logits(out=out, logits=logits, batch=1, channel=0, eos=eos)
|
|
self.assertTrue(delay_pattern_processor.active_batches.all())
|
|
self.assertTrue((delay_pattern_processor.delay_pattern == torch.tensor(delay_pattern) - 1).all())
|