transformers/tests/models/roberta/test_tokenization_roberta.py
Arthur 2da8853775
🚨🚨 🚨🚨 [Tokenizer] attemp to fix add_token issues🚨🚨 🚨🚨 (#23909)
* fix test for bart. Order is correct now let's skip BPEs

* ouf

* styling

* fix bert....

* slow refactoring

* current updates

* massive refactoring

* update

* NICE!

* update to see where I am at

* updates

* update

* update

* revert

* updates

* updates

* start supporting legacy_save

* styling

* big update

* revert some changes

* nits

* nniiiiiice

* small fixes

* kinda fix t5 with new behaviour

* major update

* fixup

* fix copies

* today's updates

* fix byt5

* upfate

* update

* update

* updates

* update vocab size test

* Barthez does not use not need the fairseq offset ids

* super calll must be after

* calll super

* move all super init

* move other super init

* fixup

* nits

* more fixes

* nits

* more fixes

* nits

* more fix

* remove useless files

* ouch all of them are affected

* and more!

* small imporvements

* no more sanitize token

* more changes around unique no split tokens

* partially fix more things

* keep legacy save but add warning

* so... more fixes

* updates

* guess deberta tokenizer could be nuked

* fixup

* fixup did some bad things

* nuke it if it breaks

* remove prints and pretrain fast from slow with new format.

* fixups

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fiou

* nit

* by default specials should not be normalized?

* update

* remove brakpoint

* updates

* a lot of updates

* fixup

* fixes revert some changes to match fast

* small nits

* that makes it cleaner

* fix camembert accordingly

* update

* some lest breaking changes

* update

* fixup

* fix byt5 and whisper mostly

* some more fixes, canine's byte vocab

* fix gpt2

* fix most of the perceiver tests (4 left)

* fix layout lmv3

* fixup

* fix copies for gpt2 style

* make sure to only warn once

* fix perciever and gpt2 tests

* some more backward compatibility: also read special tokens map because some ppl use it........////.....

* fixup

* add else when reading

* nits

* fresh updates

* fix copies

* will this make everything faster?

* fixes

* more fixes

* update

* more fixes

* fixup

* is the source of truth right?

* sorry camembert for the troubles

* current updates

* fixup

* update led

* update

* fix regression

* fix single word

* more model specific fixes

* fix t5 tests

* fixup

* more comments

* update

* fix nllb

* rstrip removed

* small fixes

* better handle additional_special_tokens and vocab sizes

* fixing

* styling

* fix 4 / 21

* fixup

* fix nlbb's tests

* some fixes

* fix t5

* fixes

* style

* fix canine tests

* damn this is nice

* nits

* m2m100 nit

* fixups

* fixes!

* fixup

* stash

* fix merge

* revert bad change

* fixup

* correct order for code Llama

* fix speecht5 post merge

* styling

* revert source of 11 fails

* small nits

* all changes in one go

* fnet hack

* fix 2 more tests

* update based on main branch of tokenizers

* fixup

* fix VITS issues

* more fixes

* fix mgp test

* fix camembert issues

* oups camembert still has 2 failing tests

* mluke fixes

* decode fixes

* small nits

* nits

* fix llama and vits

* fix camembert

* smal nits

* more fixes when initialising a fast from a slow and etc

* fix one of the last test

* fix CPM tokenizer test

* fixups

* fix pop2piano

* fixup

* ⚠️ Change tokenizers required version ⚠️

* ⚠️ Change tokenizers required version ⚠️

* "tokenizers>=0.14,<0.15", don't forget smaller than

* fix musicgen tests and pretraiendtokenizerfast

* fix owlvit and all

* update t5

* fix 800 red

* fix tests

* fix the fix of the fix of t5

* styling

* documentation nits

* cache _added_tokens_encoder

* fixups

* Nit

* fix red tests

* one last nit!

* make eveything a lot simpler

* Now it's over 😉

* few small nits

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* updates that work for now

* tests that should no be skipped / changed and fixed next

* fixup

* i am ashamed

* pushe the fix

* update

* fixups

* nits

* fix added_tokens_encoder

* fix canine test

* fix pegasus vocab

* fix transfoXL

* fixup

* whisper needs to be fixed for train new

* pegasus nits

* more pegasus fixes

* minor update

* better error message in failed test

* fix whisper failing test

* fix whisper failing test

* fix pegasus

* fixup

* fix **** pegasus

* reset things

* remove another file

* attempts to fix the strange custome encoder and offset

* nits here and there

* update

* fixup

* nit

* fix the whisper test

* nits nits

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* updates based on review

* some small update to potentially remove

* nits

* import rlu cache

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* move warning to `from_pretrained`

* update tests results now that the special tokens are always added

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
2023-09-18 20:28:36 +02:00

305 lines
14 KiB
Python

# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import json
import os
import unittest
from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class RobertaTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = RobertaTokenizer
rust_tokenizer_class = RobertaTokenizerFast
test_rust_tokenizer = True
from_pretrained_kwargs = {"cls_token": "<s>"}
def setUp(self):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
vocab = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
self.special_tokens_map = {"unk_token": "<unk>"}
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
with open(self.merges_file, "w", encoding="utf-8") as fp:
fp.write("\n".join(merges))
def get_tokenizer(self, **kwargs):
kwargs.update(self.special_tokens_map)
return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
def get_rust_tokenizer(self, **kwargs):
kwargs.update(self.special_tokens_map)
return RobertaTokenizerFast.from_pretrained(self.tmpdirname, **kwargs)
return RobertaTokenizerFast(self.vocab_file, self.merges_file, **kwargs)
def get_input_output_texts(self, tokenizer):
input_text = "lower newer"
output_text = "lower newer"
return input_text, output_text
def test_full_tokenizer(self):
tokenizer = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map)
text = "lower newer"
bpe_tokens = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"]
tokens = tokenizer.tokenize(text) # , add_prefix_space=True)
self.assertListEqual(tokens, bpe_tokens)
input_tokens = tokens + [tokenizer.unk_token]
input_bpe_tokens = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
def roberta_dict_integration_testing(self):
tokenizer = self.get_tokenizer()
self.assertListEqual(tokenizer.encode("Hello world!", add_special_tokens=False), [0, 31414, 232, 328, 2])
self.assertListEqual(
tokenizer.encode("Hello world! cécé herlolip 418", add_special_tokens=False),
[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2],
)
@slow
def test_sequence_builders(self):
tokenizer = self.tokenizer_class.from_pretrained("roberta-base")
text = tokenizer.encode("sequence builders", add_special_tokens=False)
text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False)
encoded_text_from_decode = tokenizer.encode(
"sequence builders", add_special_tokens=True, add_prefix_space=False
)
encoded_pair_from_decode = tokenizer.encode(
"sequence builders", "multi-sequence build", add_special_tokens=True, add_prefix_space=False
)
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def test_space_encoding(self):
tokenizer = self.get_tokenizer()
sequence = "Encode this sequence."
space_encoding = tokenizer.byte_encoder[" ".encode("utf-8")[0]]
# Testing encoder arguments
encoded = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=False)
first_char = tokenizer.convert_ids_to_tokens(encoded[0])[0]
self.assertNotEqual(first_char, space_encoding)
encoded = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=True)
first_char = tokenizer.convert_ids_to_tokens(encoded[0])[0]
self.assertEqual(first_char, space_encoding)
tokenizer.add_special_tokens({"bos_token": "<s>"})
encoded = tokenizer.encode(sequence, add_special_tokens=True)
first_char = tokenizer.convert_ids_to_tokens(encoded[1])[0]
self.assertNotEqual(first_char, space_encoding)
# Testing spaces after special tokens
mask = "<mask>"
tokenizer.add_special_tokens(
{"mask_token": AddedToken(mask, lstrip=True, rstrip=False)}
) # mask token has a left space
mask_ind = tokenizer.convert_tokens_to_ids(mask)
sequence = "Encode <mask> sequence"
sequence_nospace = "Encode <mask>sequence"
encoded = tokenizer.encode(sequence)
mask_loc = encoded.index(mask_ind)
first_char = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0]
self.assertEqual(first_char, space_encoding)
encoded = tokenizer.encode(sequence_nospace)
mask_loc = encoded.index(mask_ind)
first_char = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0]
self.assertNotEqual(first_char, space_encoding)
def test_pretokenized_inputs(self):
pass
def test_embeded_special_tokens(self):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
sentence = "A, <mask> AllenNLP sentence."
tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"]))
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r["attention_mask"]) / len(tokens_r["attention_mask"]),
sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]),
)
tokens_r_str = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"])
tokens_p_str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"])
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2])
self.assertSequenceEqual(tokens_r["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2])
self.assertSequenceEqual(
tokens_p_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"]
)
self.assertSequenceEqual(
tokens_r_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"]
)
def test_change_add_prefix_space_and_trim_offsets_args(self):
for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname, use_fast=True, add_prefix_space=add_prefix_space, trim_offsets=trim_offsets
)
pre_tokenizer_state = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__())
post_processor_state = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__())
self.assertEqual(pre_tokenizer_state["add_prefix_space"], add_prefix_space)
self.assertEqual(post_processor_state["add_prefix_space"], add_prefix_space)
self.assertEqual(post_processor_state["trim_offsets"], trim_offsets)
def test_offsets_mapping_with_different_add_prefix_space_and_trim_space_arguments(self):
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and
# `trim_offsets`
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
text_of_1_token = "hello" # `hello` is a token in the vocabulary of `pretrained_name`
text = f"{text_of_1_token} {text_of_1_token}"
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
)
encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
self.assertEqual(encoding.offset_mapping[0], (0, len(text_of_1_token)))
self.assertEqual(
encoding.offset_mapping[1],
(len(text_of_1_token) + 1, len(text_of_1_token) + 1 + len(text_of_1_token)),
)
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
pretrained_name, use_fast=True, add_prefix_space=False, trim_offsets=True
)
encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
self.assertEqual(encoding.offset_mapping[0], (0, len(text_of_1_token)))
self.assertEqual(
encoding.offset_mapping[1],
(len(text_of_1_token) + 1, len(text_of_1_token) + 1 + len(text_of_1_token)),
)
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=False
)
encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
self.assertEqual(encoding.offset_mapping[0], (0, len(text_of_1_token)))
self.assertEqual(
encoding.offset_mapping[1],
(len(text_of_1_token), len(text_of_1_token) + 1 + len(text_of_1_token)),
)
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
pretrained_name, use_fast=True, add_prefix_space=False, trim_offsets=False
)
encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
self.assertEqual(encoding.offset_mapping[0], (0, len(text_of_1_token)))
self.assertEqual(
encoding.offset_mapping[1],
(len(text_of_1_token), len(text_of_1_token) + 1 + len(text_of_1_token)),
)
text = f" {text}"
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
pretrained_name, use_fast=True, add_prefix_space=False, trim_offsets=True
)
encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
self.assertEqual(
encoding.offset_mapping[1],
(1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
)
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=False
)
encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(text_of_1_token)))
self.assertEqual(
encoding.offset_mapping[1],
(1 + len(text_of_1_token), 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
)
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
pretrained_name, use_fast=True, add_prefix_space=False, trim_offsets=False
)
encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(text_of_1_token)))
self.assertEqual(
encoding.offset_mapping[1],
(1 + len(text_of_1_token), 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
)