mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-19 20:48:22 +06:00

* fix test for bart. Order is correct now let's skip BPEs * ouf * styling * fix bert.... * slow refactoring * current updates * massive refactoring * update * NICE! * update to see where I am at * updates * update * update * revert * updates * updates * start supporting legacy_save * styling * big update * revert some changes * nits * nniiiiiice * small fixes * kinda fix t5 with new behaviour * major update * fixup * fix copies * today's updates * fix byt5 * upfate * update * update * updates * update vocab size test * Barthez does not use not need the fairseq offset ids * super calll must be after * calll super * move all super init * move other super init * fixup * nits * more fixes * nits * more fixes * nits * more fix * remove useless files * ouch all of them are affected * and more! * small imporvements * no more sanitize token * more changes around unique no split tokens * partially fix more things * keep legacy save but add warning * so... more fixes * updates * guess deberta tokenizer could be nuked * fixup * fixup did some bad things * nuke it if it breaks * remove prints and pretrain fast from slow with new format. * fixups * Apply suggestions from code review Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * fiou * nit * by default specials should not be normalized? * update * remove brakpoint * updates * a lot of updates * fixup * fixes revert some changes to match fast * small nits * that makes it cleaner * fix camembert accordingly * update * some lest breaking changes * update * fixup * fix byt5 and whisper mostly * some more fixes, canine's byte vocab * fix gpt2 * fix most of the perceiver tests (4 left) * fix layout lmv3 * fixup * fix copies for gpt2 style * make sure to only warn once * fix perciever and gpt2 tests * some more backward compatibility: also read special tokens map because some ppl use it........////..... * fixup * add else when reading * nits * fresh updates * fix copies * will this make everything faster? * fixes * more fixes * update * more fixes * fixup * is the source of truth right? * sorry camembert for the troubles * current updates * fixup * update led * update * fix regression * fix single word * more model specific fixes * fix t5 tests * fixup * more comments * update * fix nllb * rstrip removed * small fixes * better handle additional_special_tokens and vocab sizes * fixing * styling * fix 4 / 21 * fixup * fix nlbb's tests * some fixes * fix t5 * fixes * style * fix canine tests * damn this is nice * nits * m2m100 nit * fixups * fixes! * fixup * stash * fix merge * revert bad change * fixup * correct order for code Llama * fix speecht5 post merge * styling * revert source of 11 fails * small nits * all changes in one go * fnet hack * fix 2 more tests * update based on main branch of tokenizers * fixup * fix VITS issues * more fixes * fix mgp test * fix camembert issues * oups camembert still has 2 failing tests * mluke fixes * decode fixes * small nits * nits * fix llama and vits * fix camembert * smal nits * more fixes when initialising a fast from a slow and etc * fix one of the last test * fix CPM tokenizer test * fixups * fix pop2piano * fixup * ⚠️ Change tokenizers required version ⚠️ * ⚠️ Change tokenizers required version ⚠️ * "tokenizers>=0.14,<0.15", don't forget smaller than * fix musicgen tests and pretraiendtokenizerfast * fix owlvit and all * update t5 * fix 800 red * fix tests * fix the fix of the fix of t5 * styling * documentation nits * cache _added_tokens_encoder * fixups * Nit * fix red tests * one last nit! * make eveything a lot simpler * Now it's over 😉 * few small nits * Apply suggestions from code review Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * updates that work for now * tests that should no be skipped / changed and fixed next * fixup * i am ashamed * pushe the fix * update * fixups * nits * fix added_tokens_encoder * fix canine test * fix pegasus vocab * fix transfoXL * fixup * whisper needs to be fixed for train new * pegasus nits * more pegasus fixes * minor update * better error message in failed test * fix whisper failing test * fix whisper failing test * fix pegasus * fixup * fix **** pegasus * reset things * remove another file * attempts to fix the strange custome encoder and offset * nits here and there * update * fixup * nit * fix the whisper test * nits nits * Apply suggestions from code review Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * updates based on review * some small update to potentially remove * nits * import rlu cache * Update src/transformers/tokenization_utils_base.py Co-authored-by: Lysandre Debut <hi@lysand.re> * move warning to `from_pretrained` * update tests results now that the special tokens are always added --------- Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> Co-authored-by: Lysandre Debut <hi@lysand.re>
305 lines
14 KiB
Python
305 lines
14 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import itertools
|
|
import json
|
|
import os
|
|
import unittest
|
|
|
|
from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast
|
|
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
|
|
from transformers.testing_utils import require_tokenizers, slow
|
|
|
|
from ...test_tokenization_common import TokenizerTesterMixin
|
|
|
|
|
|
@require_tokenizers
|
|
class RobertaTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
|
tokenizer_class = RobertaTokenizer
|
|
rust_tokenizer_class = RobertaTokenizerFast
|
|
test_rust_tokenizer = True
|
|
from_pretrained_kwargs = {"cls_token": "<s>"}
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
|
|
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
|
|
vocab = [
|
|
"l",
|
|
"o",
|
|
"w",
|
|
"e",
|
|
"r",
|
|
"s",
|
|
"t",
|
|
"i",
|
|
"d",
|
|
"n",
|
|
"\u0120",
|
|
"\u0120l",
|
|
"\u0120n",
|
|
"\u0120lo",
|
|
"\u0120low",
|
|
"er",
|
|
"\u0120lowest",
|
|
"\u0120newer",
|
|
"\u0120wider",
|
|
"<unk>",
|
|
]
|
|
vocab_tokens = dict(zip(vocab, range(len(vocab))))
|
|
merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
|
|
self.special_tokens_map = {"unk_token": "<unk>"}
|
|
|
|
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
|
|
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
|
|
with open(self.vocab_file, "w", encoding="utf-8") as fp:
|
|
fp.write(json.dumps(vocab_tokens) + "\n")
|
|
with open(self.merges_file, "w", encoding="utf-8") as fp:
|
|
fp.write("\n".join(merges))
|
|
|
|
def get_tokenizer(self, **kwargs):
|
|
kwargs.update(self.special_tokens_map)
|
|
return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
def get_rust_tokenizer(self, **kwargs):
|
|
kwargs.update(self.special_tokens_map)
|
|
return RobertaTokenizerFast.from_pretrained(self.tmpdirname, **kwargs)
|
|
return RobertaTokenizerFast(self.vocab_file, self.merges_file, **kwargs)
|
|
|
|
def get_input_output_texts(self, tokenizer):
|
|
input_text = "lower newer"
|
|
output_text = "lower newer"
|
|
return input_text, output_text
|
|
|
|
def test_full_tokenizer(self):
|
|
tokenizer = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map)
|
|
text = "lower newer"
|
|
bpe_tokens = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"]
|
|
tokens = tokenizer.tokenize(text) # , add_prefix_space=True)
|
|
self.assertListEqual(tokens, bpe_tokens)
|
|
|
|
input_tokens = tokens + [tokenizer.unk_token]
|
|
input_bpe_tokens = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
|
|
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
|
|
|
|
def roberta_dict_integration_testing(self):
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
self.assertListEqual(tokenizer.encode("Hello world!", add_special_tokens=False), [0, 31414, 232, 328, 2])
|
|
self.assertListEqual(
|
|
tokenizer.encode("Hello world! cécé herlolip 418", add_special_tokens=False),
|
|
[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2],
|
|
)
|
|
|
|
@slow
|
|
def test_sequence_builders(self):
|
|
tokenizer = self.tokenizer_class.from_pretrained("roberta-base")
|
|
|
|
text = tokenizer.encode("sequence builders", add_special_tokens=False)
|
|
text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False)
|
|
|
|
encoded_text_from_decode = tokenizer.encode(
|
|
"sequence builders", add_special_tokens=True, add_prefix_space=False
|
|
)
|
|
encoded_pair_from_decode = tokenizer.encode(
|
|
"sequence builders", "multi-sequence build", add_special_tokens=True, add_prefix_space=False
|
|
)
|
|
|
|
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
|
|
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
|
|
|
|
assert encoded_sentence == encoded_text_from_decode
|
|
assert encoded_pair == encoded_pair_from_decode
|
|
|
|
def test_space_encoding(self):
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
sequence = "Encode this sequence."
|
|
space_encoding = tokenizer.byte_encoder[" ".encode("utf-8")[0]]
|
|
|
|
# Testing encoder arguments
|
|
encoded = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=False)
|
|
first_char = tokenizer.convert_ids_to_tokens(encoded[0])[0]
|
|
self.assertNotEqual(first_char, space_encoding)
|
|
|
|
encoded = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=True)
|
|
first_char = tokenizer.convert_ids_to_tokens(encoded[0])[0]
|
|
self.assertEqual(first_char, space_encoding)
|
|
|
|
tokenizer.add_special_tokens({"bos_token": "<s>"})
|
|
encoded = tokenizer.encode(sequence, add_special_tokens=True)
|
|
first_char = tokenizer.convert_ids_to_tokens(encoded[1])[0]
|
|
self.assertNotEqual(first_char, space_encoding)
|
|
|
|
# Testing spaces after special tokens
|
|
mask = "<mask>"
|
|
tokenizer.add_special_tokens(
|
|
{"mask_token": AddedToken(mask, lstrip=True, rstrip=False)}
|
|
) # mask token has a left space
|
|
mask_ind = tokenizer.convert_tokens_to_ids(mask)
|
|
|
|
sequence = "Encode <mask> sequence"
|
|
sequence_nospace = "Encode <mask>sequence"
|
|
|
|
encoded = tokenizer.encode(sequence)
|
|
mask_loc = encoded.index(mask_ind)
|
|
first_char = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0]
|
|
self.assertEqual(first_char, space_encoding)
|
|
|
|
encoded = tokenizer.encode(sequence_nospace)
|
|
mask_loc = encoded.index(mask_ind)
|
|
first_char = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0]
|
|
self.assertNotEqual(first_char, space_encoding)
|
|
|
|
def test_pretokenized_inputs(self):
|
|
pass
|
|
|
|
def test_embeded_special_tokens(self):
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
sentence = "A, <mask> AllenNLP sentence."
|
|
tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
|
|
tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
|
|
|
|
# token_type_ids should put 0 everywhere
|
|
self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"]))
|
|
|
|
# attention_mask should put 1 everywhere, so sum over length should be 1
|
|
self.assertEqual(
|
|
sum(tokens_r["attention_mask"]) / len(tokens_r["attention_mask"]),
|
|
sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]),
|
|
)
|
|
|
|
tokens_r_str = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"])
|
|
tokens_p_str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"])
|
|
|
|
# Rust correctly handles the space before the mask while python doesnt
|
|
self.assertSequenceEqual(tokens_p["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2])
|
|
self.assertSequenceEqual(tokens_r["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2])
|
|
|
|
self.assertSequenceEqual(
|
|
tokens_p_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"]
|
|
)
|
|
self.assertSequenceEqual(
|
|
tokens_r_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"]
|
|
)
|
|
|
|
def test_change_add_prefix_space_and_trim_offsets_args(self):
|
|
for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2):
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
|
|
self.tmpdirname, use_fast=True, add_prefix_space=add_prefix_space, trim_offsets=trim_offsets
|
|
)
|
|
|
|
pre_tokenizer_state = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__())
|
|
post_processor_state = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__())
|
|
|
|
self.assertEqual(pre_tokenizer_state["add_prefix_space"], add_prefix_space)
|
|
|
|
self.assertEqual(post_processor_state["add_prefix_space"], add_prefix_space)
|
|
self.assertEqual(post_processor_state["trim_offsets"], trim_offsets)
|
|
|
|
def test_offsets_mapping_with_different_add_prefix_space_and_trim_space_arguments(self):
|
|
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and
|
|
# `trim_offsets`
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
text_of_1_token = "hello" # `hello` is a token in the vocabulary of `pretrained_name`
|
|
text = f"{text_of_1_token} {text_of_1_token}"
|
|
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
|
|
pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
|
|
)
|
|
encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
|
|
self.assertEqual(encoding.offset_mapping[0], (0, len(text_of_1_token)))
|
|
self.assertEqual(
|
|
encoding.offset_mapping[1],
|
|
(len(text_of_1_token) + 1, len(text_of_1_token) + 1 + len(text_of_1_token)),
|
|
)
|
|
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
|
|
pretrained_name, use_fast=True, add_prefix_space=False, trim_offsets=True
|
|
)
|
|
encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
|
|
self.assertEqual(encoding.offset_mapping[0], (0, len(text_of_1_token)))
|
|
self.assertEqual(
|
|
encoding.offset_mapping[1],
|
|
(len(text_of_1_token) + 1, len(text_of_1_token) + 1 + len(text_of_1_token)),
|
|
)
|
|
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
|
|
pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=False
|
|
)
|
|
encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
|
|
self.assertEqual(encoding.offset_mapping[0], (0, len(text_of_1_token)))
|
|
self.assertEqual(
|
|
encoding.offset_mapping[1],
|
|
(len(text_of_1_token), len(text_of_1_token) + 1 + len(text_of_1_token)),
|
|
)
|
|
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
|
|
pretrained_name, use_fast=True, add_prefix_space=False, trim_offsets=False
|
|
)
|
|
encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
|
|
self.assertEqual(encoding.offset_mapping[0], (0, len(text_of_1_token)))
|
|
self.assertEqual(
|
|
encoding.offset_mapping[1],
|
|
(len(text_of_1_token), len(text_of_1_token) + 1 + len(text_of_1_token)),
|
|
)
|
|
|
|
text = f" {text}"
|
|
|
|
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
|
|
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
|
|
# )
|
|
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
|
|
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
|
|
# self.assertEqual(
|
|
# encoding.offset_mapping[1],
|
|
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
|
|
# )
|
|
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
|
|
pretrained_name, use_fast=True, add_prefix_space=False, trim_offsets=True
|
|
)
|
|
encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
|
|
self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
|
|
self.assertEqual(
|
|
encoding.offset_mapping[1],
|
|
(1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
|
|
)
|
|
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
|
|
pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=False
|
|
)
|
|
encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
|
|
self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(text_of_1_token)))
|
|
self.assertEqual(
|
|
encoding.offset_mapping[1],
|
|
(1 + len(text_of_1_token), 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
|
|
)
|
|
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
|
|
pretrained_name, use_fast=True, add_prefix_space=False, trim_offsets=False
|
|
)
|
|
encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
|
|
self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(text_of_1_token)))
|
|
self.assertEqual(
|
|
encoding.offset_mapping[1],
|
|
(1 + len(text_of_1_token), 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
|
|
)
|