transformers/tests/models/m2m_100/test_tokenization_m2m_100.py
Arthur 2da8853775
🚨🚨 🚨🚨 [Tokenizer] attemp to fix add_token issues🚨🚨 🚨🚨 (#23909)
* fix test for bart. Order is correct now let's skip BPEs

* ouf

* styling

* fix bert....

* slow refactoring

* current updates

* massive refactoring

* update

* NICE!

* update to see where I am at

* updates

* update

* update

* revert

* updates

* updates

* start supporting legacy_save

* styling

* big update

* revert some changes

* nits

* nniiiiiice

* small fixes

* kinda fix t5 with new behaviour

* major update

* fixup

* fix copies

* today's updates

* fix byt5

* upfate

* update

* update

* updates

* update vocab size test

* Barthez does not use not need the fairseq offset ids

* super calll must be after

* calll super

* move all super init

* move other super init

* fixup

* nits

* more fixes

* nits

* more fixes

* nits

* more fix

* remove useless files

* ouch all of them are affected

* and more!

* small imporvements

* no more sanitize token

* more changes around unique no split tokens

* partially fix more things

* keep legacy save but add warning

* so... more fixes

* updates

* guess deberta tokenizer could be nuked

* fixup

* fixup did some bad things

* nuke it if it breaks

* remove prints and pretrain fast from slow with new format.

* fixups

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fiou

* nit

* by default specials should not be normalized?

* update

* remove brakpoint

* updates

* a lot of updates

* fixup

* fixes revert some changes to match fast

* small nits

* that makes it cleaner

* fix camembert accordingly

* update

* some lest breaking changes

* update

* fixup

* fix byt5 and whisper mostly

* some more fixes, canine's byte vocab

* fix gpt2

* fix most of the perceiver tests (4 left)

* fix layout lmv3

* fixup

* fix copies for gpt2 style

* make sure to only warn once

* fix perciever and gpt2 tests

* some more backward compatibility: also read special tokens map because some ppl use it........////.....

* fixup

* add else when reading

* nits

* fresh updates

* fix copies

* will this make everything faster?

* fixes

* more fixes

* update

* more fixes

* fixup

* is the source of truth right?

* sorry camembert for the troubles

* current updates

* fixup

* update led

* update

* fix regression

* fix single word

* more model specific fixes

* fix t5 tests

* fixup

* more comments

* update

* fix nllb

* rstrip removed

* small fixes

* better handle additional_special_tokens and vocab sizes

* fixing

* styling

* fix 4 / 21

* fixup

* fix nlbb's tests

* some fixes

* fix t5

* fixes

* style

* fix canine tests

* damn this is nice

* nits

* m2m100 nit

* fixups

* fixes!

* fixup

* stash

* fix merge

* revert bad change

* fixup

* correct order for code Llama

* fix speecht5 post merge

* styling

* revert source of 11 fails

* small nits

* all changes in one go

* fnet hack

* fix 2 more tests

* update based on main branch of tokenizers

* fixup

* fix VITS issues

* more fixes

* fix mgp test

* fix camembert issues

* oups camembert still has 2 failing tests

* mluke fixes

* decode fixes

* small nits

* nits

* fix llama and vits

* fix camembert

* smal nits

* more fixes when initialising a fast from a slow and etc

* fix one of the last test

* fix CPM tokenizer test

* fixups

* fix pop2piano

* fixup

* ⚠️ Change tokenizers required version ⚠️

* ⚠️ Change tokenizers required version ⚠️

* "tokenizers>=0.14,<0.15", don't forget smaller than

* fix musicgen tests and pretraiendtokenizerfast

* fix owlvit and all

* update t5

* fix 800 red

* fix tests

* fix the fix of the fix of t5

* styling

* documentation nits

* cache _added_tokens_encoder

* fixups

* Nit

* fix red tests

* one last nit!

* make eveything a lot simpler

* Now it's over 😉

* few small nits

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* updates that work for now

* tests that should no be skipped / changed and fixed next

* fixup

* i am ashamed

* pushe the fix

* update

* fixups

* nits

* fix added_tokens_encoder

* fix canine test

* fix pegasus vocab

* fix transfoXL

* fixup

* whisper needs to be fixed for train new

* pegasus nits

* more pegasus fixes

* minor update

* better error message in failed test

* fix whisper failing test

* fix whisper failing test

* fix pegasus

* fixup

* fix **** pegasus

* reset things

* remove another file

* attempts to fix the strange custome encoder and offset

* nits here and there

* update

* fixup

* nit

* fix the whisper test

* nits nits

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* updates based on review

* some small update to potentially remove

* nits

* import rlu cache

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* move warning to `from_pretrained`

* update tests results now that the special tokens are always added

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
2023-09-18 20:28:36 +02:00

252 lines
12 KiB
Python

# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import M2M100Tokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from transformers.utils import is_sentencepiece_available
if is_sentencepiece_available():
from transformers.models.m2m_100.tokenization_m2m_100 import VOCAB_FILES_NAMES, save_json
from ...test_tokenization_common import TokenizerTesterMixin
if is_sentencepiece_available():
SAMPLE_SP = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
from transformers.models.m2m_100.modeling_m2m_100 import shift_tokens_right
EN_CODE = 128022
FR_CODE = 128028
@require_sentencepiece
class M2M100TokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = M2M100Tokenizer
test_rust_tokenizer = False
test_seq2seq = False
test_sentencepiece = True
def setUp(self):
super().setUp()
vocab = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
save_dir = Path(self.tmpdirname)
save_json(vocab_tokens, save_dir / VOCAB_FILES_NAMES["vocab_file"])
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(SAMPLE_SP, save_dir / VOCAB_FILES_NAMES["spm_file"])
tokenizer = M2M100Tokenizer.from_pretrained(self.tmpdirname)
tokenizer.save_pretrained(self.tmpdirname)
def get_tokenizer(self, **kwargs):
return M2M100Tokenizer.from_pretrained(self.tmpdirname, **kwargs)
def get_input_output_texts(self, tokenizer):
return (
"This is a test",
"This is a test",
)
def test_convert_token_and_id(self):
"""Test ``_convert_token_to_id`` and ``_convert_id_to_token``."""
token = "</s>"
token_id = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token)
def test_get_vocab(self):
tokenizer = self.get_tokenizer()
vocab_keys = list(tokenizer.get_vocab().keys())
self.assertEqual(vocab_keys[0], "</s>")
self.assertEqual(vocab_keys[1], "<unk>")
self.assertEqual(vocab_keys[-1], "<s>")
# The length of the vocab keys can be different
# self.assertEqual(len(vocab_keys), tokenizer.vocab_size)
@unittest.skip("Skip this test while all models are still to be uploaded.")
def test_pretrained_model_lists(self):
pass
def test_full_tokenizer(self):
tokenizer = self.get_tokenizer()
tokens = tokenizer.tokenize("This is a test")
self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(tokens),
[2, 3, 4, 5, 6],
)
back_tokens = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6])
self.assertListEqual(back_tokens, ["▁This", "▁is", "▁a", "▁t", "est"])
text = tokenizer.convert_tokens_to_string(tokens)
self.assertEqual(text, "This is a test")
@slow
def test_tokenizer_integration(self):
# fmt: off
expected_encoding = {'input_ids': [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=expected_encoding,
model_name="facebook/m2m100_418M",
revision="c168bae485c864188cf9aa0e4108b0b6934dc91e",
)
@require_torch
@require_sentencepiece
@require_tokenizers
class M2M100TokenizerIntegrationTest(unittest.TestCase):
checkpoint_name = "facebook/m2m100_418M"
src_text = [
"In my opinion, there are two levels of response from the French government.",
"NSA Affair Emphasizes Complete Lack of Debate on Intelligence",
]
tgt_text = [
"Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.",
"L'affaire NSA souligne l'absence totale de débat sur le renseignement",
]
# fmt: off
expected_src_tokens = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2]
# fmt: on
@classmethod
def setUpClass(cls):
cls.tokenizer: M2M100Tokenizer = M2M100Tokenizer.from_pretrained(
cls.checkpoint_name, src_lang="en", tgt_lang="fr"
)
cls.pad_token_id = 1
return cls
def check_language_codes(self):
self.assertEqual(self.tokenizer.get_lang_id("ar"), 128006)
self.assertEqual(self.tokenizer.get_lang_id("en"), 128022)
self.assertEqual(self.tokenizer.get_lang_id("ro"), 128076)
self.assertEqual(self.tokenizer.get_lang_id("mr"), 128063)
def test_get_vocab(self):
vocab = self.tokenizer.get_vocab()
self.assertEqual(len(vocab), len(self.tokenizer))
self.assertEqual(vocab["<unk>"], 3)
self.assertIn(self.tokenizer.get_lang_token("en"), vocab)
def test_tokenizer_batch_encode_plus(self):
self.tokenizer.src_lang = "en"
ids = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0]
self.assertListEqual(self.expected_src_tokens, ids)
def test_tokenizer_decode_ignores_language_codes(self):
self.assertIn(FR_CODE, self.tokenizer.all_special_ids)
# fmt: off
generated_ids = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2]
# fmt: on
result = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
expected_french = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True)
self.assertEqual(result, expected_french)
self.assertNotIn(self.tokenizer.eos_token, result)
def test_special_tokens_unaffacted_by_save_load(self):
with tempfile.TemporaryDirectory() as tmpdirname:
original_special_tokens = self.tokenizer.lang_token_to_id
self.tokenizer.save_pretrained(tmpdirname)
new_tok = M2M100Tokenizer.from_pretrained(tmpdirname)
self.assertDictEqual(new_tok.lang_token_to_id, original_special_tokens)
@require_torch
def test_batch_fairseq_parity(self):
self.tokenizer.src_lang = "en"
self.tokenizer.tgt_lang = "fr"
batch = self.tokenizer(self.src_text, text_target=self.tgt_text, padding=True, return_tensors="pt")
batch["decoder_input_ids"] = shift_tokens_right(
batch["labels"], self.tokenizer.pad_token_id, self.tokenizer.eos_token_id
)
for k in batch:
batch[k] = batch[k].tolist()
# batch = {k: v.tolist() for k,v in batch.items()}
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
# batch.decoder_inputs_ids[0][0] ==
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == FR_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2] == [2, FR_CODE]
@require_torch
def test_src_lang_setter(self):
self.tokenizer.src_lang = "mr"
self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id("mr")])
self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id])
self.tokenizer.src_lang = "zh"
self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id("zh")])
self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id])
@require_torch
def test_tokenizer_target_mode(self):
self.tokenizer.tgt_lang = "mr"
self.tokenizer._switch_to_target_mode()
self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id("mr")])
self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id])
self.tokenizer._switch_to_input_mode()
self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id(self.tokenizer.src_lang)])
self.tokenizer.tgt_lang = "zh"
self.tokenizer._switch_to_target_mode()
self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id("zh")])
self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id])
self.tokenizer._switch_to_input_mode()
self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id(self.tokenizer.src_lang)])
@require_torch
def test_tokenizer_translation(self):
inputs = self.tokenizer._build_translation_inputs("A test", return_tensors="pt", src_lang="en", tgt_lang="ar")
self.assertEqual(
nested_simplify(inputs),
{
# en_XX, A, test, EOS
"input_ids": [[128022, 58, 4183, 2]],
"attention_mask": [[1, 1, 1, 1]],
# ar_AR
"forced_bos_token_id": 128006,
},
)