mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-20 04:58:22 +06:00

* move test model folders (TODO: fix imports and others) * fix (potentially partially) imports (in model test modules) * fix (potentially partially) imports (in tokenization test modules) * fix (potentially partially) imports (in feature extraction test modules) * fix import utils.test_modeling_tf_core * fix path ../fixtures/ * fix imports about generation.test_generation_flax_utils * fix more imports * fix fixture path * fix get_test_dir * update module_to_test_file * fix get_tests_dir from wrong transformers.utils * update config.yml (CircleCI) * fix style * remove missing imports * update new model script * update check_repo * update SPECIAL_MODULE_TO_TEST_MAP * fix style * add __init__ * update self-scheduled * fix add_new_model scripts * check one way to get location back * python setup.py build install * fix import in test auto * update self-scheduled.yml * update slack notification script * Add comments about artifact names * fix for yolos Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
178 lines
6.1 KiB
Python
178 lines
6.1 KiB
Python
# coding=utf-8
|
|
# Copyright 2021 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import json
|
|
import os
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
from datasets import load_dataset
|
|
|
|
from transformers.testing_utils import require_torch, require_vision, slow
|
|
from transformers.utils import is_torch_available, is_vision_available
|
|
|
|
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import ImageGPTFeatureExtractor
|
|
|
|
|
|
class ImageGPTFeatureExtractionTester(unittest.TestCase):
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=7,
|
|
num_channels=3,
|
|
image_size=18,
|
|
min_resolution=30,
|
|
max_resolution=400,
|
|
do_resize=True,
|
|
size=18,
|
|
do_normalize=True,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.num_channels = num_channels
|
|
self.image_size = image_size
|
|
self.min_resolution = min_resolution
|
|
self.max_resolution = max_resolution
|
|
self.do_resize = do_resize
|
|
self.size = size
|
|
self.do_normalize = do_normalize
|
|
|
|
def prepare_feat_extract_dict(self):
|
|
return {
|
|
# here we create 2 clusters for the sake of simplicity
|
|
"clusters": np.asarray(
|
|
[
|
|
[0.8866443634033203, 0.6618829369544983, 0.3891746401786804],
|
|
[-0.6042559146881104, -0.02295008860528469, 0.5423797369003296],
|
|
]
|
|
),
|
|
"do_resize": self.do_resize,
|
|
"size": self.size,
|
|
"do_normalize": self.do_normalize,
|
|
}
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class ImageGPTFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCase):
|
|
|
|
feature_extraction_class = ImageGPTFeatureExtractor if is_vision_available() else None
|
|
|
|
def setUp(self):
|
|
self.feature_extract_tester = ImageGPTFeatureExtractionTester(self)
|
|
|
|
@property
|
|
def feat_extract_dict(self):
|
|
return self.feature_extract_tester.prepare_feat_extract_dict()
|
|
|
|
def test_feat_extract_properties(self):
|
|
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
|
|
self.assertTrue(hasattr(feature_extractor, "clusters"))
|
|
self.assertTrue(hasattr(feature_extractor, "do_resize"))
|
|
self.assertTrue(hasattr(feature_extractor, "size"))
|
|
self.assertTrue(hasattr(feature_extractor, "do_normalize"))
|
|
|
|
def test_feat_extract_to_json_string(self):
|
|
feat_extract = self.feature_extraction_class(**self.feat_extract_dict)
|
|
obj = json.loads(feat_extract.to_json_string())
|
|
for key, value in self.feat_extract_dict.items():
|
|
if key == "clusters":
|
|
self.assertTrue(np.array_equal(value, obj[key]))
|
|
else:
|
|
self.assertEqual(obj[key], value)
|
|
|
|
def test_feat_extract_to_json_file(self):
|
|
feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
json_file_path = os.path.join(tmpdirname, "feat_extract.json")
|
|
feat_extract_first.to_json_file(json_file_path)
|
|
feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path).to_dict()
|
|
|
|
feat_extract_first = feat_extract_first.to_dict()
|
|
for key, value in feat_extract_first.items():
|
|
if key == "clusters":
|
|
self.assertTrue(np.array_equal(value, feat_extract_second[key]))
|
|
else:
|
|
self.assertEqual(feat_extract_first[key], value)
|
|
|
|
def test_feat_extract_from_and_save_pretrained(self):
|
|
feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
feat_extract_first.save_pretrained(tmpdirname)
|
|
feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname).to_dict()
|
|
|
|
feat_extract_first = feat_extract_first.to_dict()
|
|
for key, value in feat_extract_first.items():
|
|
if key == "clusters":
|
|
self.assertTrue(np.array_equal(value, feat_extract_second[key]))
|
|
else:
|
|
self.assertEqual(feat_extract_first[key], value)
|
|
|
|
@unittest.skip("ImageGPT requires clusters at initialization")
|
|
def test_init_without_params(self):
|
|
pass
|
|
|
|
|
|
def prepare_images():
|
|
dataset = load_dataset("hf-internal-testing/fixtures_image_utils", split="test")
|
|
|
|
image1 = Image.open(dataset[4]["file"])
|
|
image2 = Image.open(dataset[5]["file"])
|
|
|
|
images = [image1, image2]
|
|
|
|
return images
|
|
|
|
|
|
@require_vision
|
|
@require_torch
|
|
class ImageGPTFeatureExtractorIntegrationTest(unittest.TestCase):
|
|
@slow
|
|
def test_image(self):
|
|
feature_extractor = ImageGPTFeatureExtractor.from_pretrained("openai/imagegpt-small")
|
|
|
|
images = prepare_images()
|
|
|
|
# test non-batched
|
|
encoding = feature_extractor(images[0], return_tensors="pt")
|
|
|
|
self.assertIsInstance(encoding.input_ids, torch.LongTensor)
|
|
self.assertEqual(encoding.input_ids.shape, (1, 1024))
|
|
|
|
expected_slice = [306, 191, 191]
|
|
self.assertEqual(encoding.input_ids[0, :3].tolist(), expected_slice)
|
|
|
|
# test batched
|
|
encoding = feature_extractor(images, return_tensors="pt")
|
|
|
|
self.assertIsInstance(encoding.input_ids, torch.LongTensor)
|
|
self.assertEqual(encoding.input_ids.shape, (2, 1024))
|
|
|
|
expected_slice = [303, 13, 13]
|
|
self.assertEqual(encoding.input_ids[1, -3:].tolist(), expected_slice)
|