transformers/docs/source/en/model_doc/olmo_1124.md
Shane A 3ee24e2208
Add OLMo November 2024 (#34551)
* Add model skeletion with transformers-cli add-new-model-like

* Convert config to modular, add rms_norm_eps, delete clip_qkv

* Convert model to modular, add RMSNorm

* Add flash attention with qk norm and no qkv clipping

* Add decoder layer with RMSNorm after attention/feedforward layers

* Add base and causal model

* Add converter improvements from OLMo repo

* Update weight loading in OLMo to HF converter

* Set correct default for rms_norm_eps

* Set correct pipeline_model_mapping in test

* Run make fixup

* Fix model type

* Re-run modular conversion

* Manually set config docs to fix build errors

* Convert olmo-1124 to olmo_1124 to fix flash attention docs errors

* Start updating tests

* Update tests

* Copy upstream test_eager_matches_sdpa_inference_1_bfloat16 changes to olmo_1124

* Rename input_layernorm and post_attention_layernorm to reflect their ops better

* Use correct tokenizer

* Remove test unsupported by GPT2 tokenizer

* Create GenerationConfig outside of from_pretrained call

* Use simpler init file structure

* Add explicit __all__ to support simplified init

* Make safetensor serialization the default

* Update OLMo November 2024 docs
2024-11-18 10:43:10 +01:00

1.5 KiB

OLMo November 2024

Overview

The OLMo November 2024 model is a successor of the OLMo model, which was proposed in OLMo: Accelerating the Science of Language Models.

The architectural changes from the original OLMo model to this model are:

  • RMSNorm is used instead of standard layer norm.
  • Norm is applied to attention queries and keys.
  • Norm is applied after attention/feedforward layers rather than before.

This model was contributed by shanearora. The original code can be found here.

Olmo1124Config

autodoc Olmo1124Config

Olmo1124Model

autodoc Olmo1124Model - forward

Olmo1124ForCausalLM

autodoc Olmo1124ForCausalLM - forward