mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-19 12:38:23 +06:00

* Detect mismatch by analyzing config * Fix comment * Fix import * Update src/transformers/tokenization_utils_base.py Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com> * Revise based on reviews * remove kwargs * Fix exception * Fix handling exception again * Disable mismatch test in PreTrainedTokenizerFast Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
116 lines
5.1 KiB
Python
116 lines
5.1 KiB
Python
# coding=utf-8
|
|
# Copyright 2019 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import concurrent.futures
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
from transformers import PreTrainedTokenizerFast
|
|
from transformers.testing_utils import require_tokenizers
|
|
|
|
from .test_tokenization_common import TokenizerTesterMixin
|
|
|
|
|
|
@require_tokenizers
|
|
class PreTrainedTokenizationFastTest(TokenizerTesterMixin, unittest.TestCase):
|
|
rust_tokenizer_class = PreTrainedTokenizerFast
|
|
test_slow_tokenizer = False
|
|
test_rust_tokenizer = True
|
|
from_pretrained_vocab_key = "tokenizer_file"
|
|
|
|
def setUp(self):
|
|
self.test_rust_tokenizer = False # because we don't have pretrained_vocab_files_map
|
|
super().setUp()
|
|
self.test_rust_tokenizer = True
|
|
|
|
model_paths = ["robot-test/dummy-tokenizer-fast", "robot-test/dummy-tokenizer-wordlevel"]
|
|
|
|
# Inclusion of 2 tokenizers to test different types of models (Unigram and WordLevel for the moment)
|
|
self.tokenizers_list = [(PreTrainedTokenizerFast, model_path, {}) for model_path in model_paths]
|
|
|
|
tokenizer = PreTrainedTokenizerFast.from_pretrained(model_paths[0])
|
|
tokenizer.save_pretrained(self.tmpdirname)
|
|
|
|
def test_tokenizer_mismatch_warning(self):
|
|
# We disable this test for PreTrainedTokenizerFast because it is the only tokenizer that is not linked to any
|
|
# model
|
|
pass
|
|
|
|
def test_pretrained_model_lists(self):
|
|
# We disable this test for PreTrainedTokenizerFast because it is the only tokenizer that is not linked to any
|
|
# model
|
|
pass
|
|
|
|
def test_prepare_for_model(self):
|
|
# We disable this test for PreTrainedTokenizerFast because it is the only tokenizer that is not linked to any
|
|
# model
|
|
pass
|
|
|
|
def test_rust_tokenizer_signature(self):
|
|
# PreTrainedTokenizerFast doesn't have tokenizer_file in its signature
|
|
pass
|
|
|
|
def test_training_new_tokenizer(self):
|
|
tmpdirname_orig = self.tmpdirname
|
|
# Here we want to test the 2 available tokenizers that use 2 different types of models: Unigram and WordLevel.
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
try:
|
|
self.tmpdirname = tempfile.mkdtemp()
|
|
tokenizer = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
|
|
tokenizer.save_pretrained(self.tmpdirname)
|
|
super().test_training_new_tokenizer()
|
|
finally:
|
|
# Even if the test fails, we must be sure that the folder is deleted and that the default tokenizer
|
|
# is restored
|
|
shutil.rmtree(self.tmpdirname)
|
|
self.tmpdirname = tmpdirname_orig
|
|
|
|
def test_training_new_tokenizer_with_special_tokens_change(self):
|
|
tmpdirname_orig = self.tmpdirname
|
|
# Here we want to test the 2 available tokenizers that use 2 different types of models: Unigram and WordLevel.
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
try:
|
|
self.tmpdirname = tempfile.mkdtemp()
|
|
tokenizer = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
|
|
tokenizer.save_pretrained(self.tmpdirname)
|
|
super().test_training_new_tokenizer_with_special_tokens_change()
|
|
finally:
|
|
# Even if the test fails, we must be sure that the folder is deleted and that the default tokenizer
|
|
# is restored
|
|
shutil.rmtree(self.tmpdirname)
|
|
self.tmpdirname = tmpdirname_orig
|
|
|
|
|
|
@require_tokenizers
|
|
class ReduceMutableBorrowTests(unittest.TestCase):
|
|
def test_async_share_tokenizer(self):
|
|
# See https://github.com/huggingface/transformers/pull/12550
|
|
# and https://github.com/huggingface/tokenizers/issues/537
|
|
tokenizer = PreTrainedTokenizerFast.from_pretrained("robot-test/dummy-tokenizer-wordlevel")
|
|
text = "The Matrix is a 1999 science fiction action film."
|
|
|
|
with concurrent.futures.ThreadPoolExecutor() as executor:
|
|
futures = [executor.submit(self.fetch, tokenizer, text) for i in range(10)]
|
|
return_value = [future.result() for future in futures]
|
|
self.assertEqual(return_value, [[1, 10, 0, 8, 0, 18, 0, 0, 0, 2] for i in range(10)])
|
|
|
|
def fetch(self, tokenizer, text):
|
|
return tokenizer.encode(text, truncation="longest_first", padding="longest")
|