# Token classification Token classification assigns a label to individual tokens in a sentence. One of the most common token classification tasks is Named Entity Recognition (NER). NER attempts to find a label for each entity in a sentence, such as a person, location, or organization. This guide will show you how to fine-tune [DistilBERT](https://huggingface.co/distilbert-base-uncased) on the [WNUT 17](https://huggingface.co/datasets/wnut_17) dataset to detect new entities. See the token classification [task page](https://huggingface.co/tasks/token-classification) for more information about other forms of token classification and their associated models, datasets, and metrics. ## Load WNUT 17 dataset Load the WNUT 17 dataset from the 🤗 Datasets library: ```py >>> from datasets import load_dataset >>> wnut = load_dataset("wnut_17") ``` Then take a look at an example: ```py >>> wnut["train"][0] {'id': '0', 'ner_tags': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0], 'tokens': ['@paulwalk', 'It', "'s", 'the', 'view', 'from', 'where', 'I', "'m", 'living', 'for', 'two', 'weeks', '.', 'Empire', 'State', 'Building', '=', 'ESB', '.', 'Pretty', 'bad', 'storm', 'here', 'last', 'evening', '.'] } ``` Each number in `ner_tags` represents an entity. Convert the number to a label name for more information: ```py >>> label_list = wnut["train"].features[f"ner_tags"].feature.names >>> label_list [ "O", "B-corporation", "I-corporation", "B-creative-work", "I-creative-work", "B-group", "I-group", "B-location", "I-location", "B-person", "I-person", "B-product", "I-product", ] ``` The `ner_tag` describes an entity, such as a corporation, location, or person. The letter that prefixes each `ner_tag` indicates the token position of the entity: - `B-` indicates the beginning of an entity. - `I-` indicates a token is contained inside the same entity (e.g., the `State` token is a part of an entity like `Empire State Building`). - `0` indicates the token doesn't correspond to any entity. ## Preprocess Load the DistilBERT tokenizer to process the `tokens`: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") ``` Since the input has already been split into words, set `is_split_into_words=True` to tokenize the words into subwords: ```py >>> tokenized_input = tokenizer(example["tokens"], is_split_into_words=True) >>> tokens = tokenizer.convert_ids_to_tokens(tokenized_input["input_ids"]) >>> tokens ['[CLS]', '@', 'paul', '##walk', 'it', "'", 's', 'the', 'view', 'from', 'where', 'i', "'", 'm', 'living', 'for', 'two', 'weeks', '.', 'empire', 'state', 'building', '=', 'es', '##b', '.', 'pretty', 'bad', 'storm', 'here', 'last', 'evening', '.', '[SEP]'] ``` Adding the special tokens `[CLS]` and `[SEP]` and subword tokenization creates a mismatch between the input and labels. A single word corresponding to a single label may be split into two subwords. You will need to realign the tokens and labels by: 1. Mapping all tokens to their corresponding word with the [`word_ids`](https://huggingface.co/docs/tokenizers/python/latest/api/reference.html#tokenizers.Encoding.word_ids) method. 2. Assigning the label `-100` to the special tokens `[CLS]` and `[SEP]` so the PyTorch loss function ignores them. 3. Only labeling the first token of a given word. Assign `-100` to other subtokens from the same word. Here is how you can create a function to realign the tokens and labels, and truncate sequences to be no longer than DistilBERT's maximum input length:: ```py >>> def tokenize_and_align_labels(examples): ... tokenized_inputs = tokenizer(examples["tokens"], truncation=True, is_split_into_words=True) ... labels = [] ... for i, label in enumerate(examples[f"ner_tags"]): ... word_ids = tokenized_inputs.word_ids(batch_index=i) # Map tokens to their respective word. ... previous_word_idx = None ... label_ids = [] ... for word_idx in word_ids: # Set the special tokens to -100. ... if word_idx is None: ... label_ids.append(-100) ... elif word_idx != previous_word_idx: # Only label the first token of a given word. ... label_ids.append(label[word_idx]) ... else: ... label_ids.append(-100) ... previous_word_idx = word_idx ... labels.append(label_ids) ... tokenized_inputs["labels"] = labels ... return tokenized_inputs ``` Use 🤗 Datasets [`map`](https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map) function to tokenize and align the labels over the entire dataset. You can speed up the `map` function by setting `batched=True` to process multiple elements of the dataset at once: ```py >>> tokenized_wnut = wnut.map(tokenize_and_align_labels, batched=True) ``` Use [`DataCollatorForTokenClassification`] to create a batch of examples. It will also *dynamically pad* your text and labels to the length of the longest element in its batch, so they are a uniform length. While it is possible to pad your text in the `tokenizer` function by setting `padding=True`, dynamic padding is more efficient. ```py >>> from transformers import DataCollatorForTokenClassification >>> data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer) ``` ```py >>> from transformers import DataCollatorForTokenClassification >>> data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer, return_tensors="tf") ``` ## Fine-tune with Trainer Load DistilBERT with [`AutoModelForTokenClassification`] along with the number of expected labels: ```py >>> from transformers import AutoModelForTokenClassification, TrainingArguments, Trainer >>> model = AutoModelForTokenClassification.from_pretrained("distilbert-base-uncased", num_labels=14) ``` If you aren't familiar with fine-tuning a model with the [`Trainer`], take a look at the basic tutorial [here](../training#finetune-with-trainer)! At this point, only three steps remain: 1. Define your training hyperparameters in [`TrainingArguments`]. 2. Pass the training arguments to [`Trainer`] along with the model, dataset, tokenizer, and data collator. 3. Call [`~Trainer.train`] to fine-tune your model. ```py >>> training_args = TrainingArguments( ... output_dir="./results", ... evaluation_strategy="epoch", ... learning_rate=2e-5, ... per_device_train_batch_size=16, ... per_device_eval_batch_size=16, ... num_train_epochs=3, ... weight_decay=0.01, ... ) >>> trainer = Trainer( ... model=model, ... args=training_args, ... train_dataset=tokenized_wnut["train"], ... eval_dataset=tokenized_wnut["test"], ... tokenizer=tokenizer, ... data_collator=data_collator, ... ) >>> trainer.train() ``` ## Fine-tune with TensorFlow To fine-tune a model in TensorFlow is just as easy, with only a few differences. If you aren't familiar with fine-tuning a model with Keras, take a look at the basic tutorial [here](../training#finetune-with-keras)! Convert your datasets to the `tf.data.Dataset` format with [`to_tf_dataset`](https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.to_tf_dataset). Specify inputs and labels in `columns`, whether to shuffle the dataset order, batch size, and the data collator: ```py >>> tf_train_set = tokenized_wnut["train"].to_tf_dataset( ... columns=["attention_mask", "input_ids", "labels"], ... shuffle=True, ... batch_size=16, ... collate_fn=data_collator, ... ) >>> tf_validation_set = tokenized_wnut["validation"].to_tf_dataset( ... columns=["attention_mask", "input_ids", "labels"], ... shuffle=False, ... batch_size=16, ... collate_fn=data_collator, ... ) ``` Set up an optimizer function, learning rate schedule, and some training hyperparameters: ```py >>> from transformers import create_optimizer >>> batch_size = 16 >>> num_train_epochs = 3 >>> num_train_steps = (len(tokenized_wnut["train"]) // batch_size) * num_train_epochs >>> optimizer, lr_schedule = create_optimizer( ... init_lr=2e-5, ... num_train_steps=num_train_steps, ... weight_decay_rate=0.01, ... num_warmup_steps=0, ... ) ``` Load DistilBERT with [`TFAutoModelForTokenClassification`] along with the number of expected labels: ```py >>> from transformers import TFAutoModelForTokenClassification >>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert-base-uncased", num_labels=2) ``` Configure the model for training with [`compile`](https://keras.io/api/models/model_training_apis/#compile-method): ```py >>> import tensorflow as tf >>> model.compile(optimizer=optimizer) ``` Call [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) to fine-tune the model: ```py >>> model.fit(x=tf_train_set, validation_data=tf_validation_set, epochs=3) ``` For a more in-depth example of how to fine-tune a model for token classification, take a look at the corresponding [PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/token_classification.ipynb) or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/token_classification-tf.ipynb).