# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import pytest from transformers import pipeline from transformers.testing_utils import is_pipeline_test, is_torch_available, require_torch, slow from .test_pipelines_common import MonoInputPipelineCommonMixin if is_torch_available(): from transformers.models.mbart import MBart50TokenizerFast, MBartForConditionalGeneration class TranslationEnToDePipelineTests(MonoInputPipelineCommonMixin, unittest.TestCase): pipeline_task = "translation_en_to_de" small_models = ["patrickvonplaten/t5-tiny-random"] # Default model - Models tested without the @slow decorator large_models = [None] # Models tested with the @slow decorator invalid_inputs = [4, ""] mandatory_keys = ["translation_text"] class TranslationEnToRoPipelineTests(MonoInputPipelineCommonMixin, unittest.TestCase): pipeline_task = "translation_en_to_ro" small_models = ["patrickvonplaten/t5-tiny-random"] # Default model - Models tested without the @slow decorator large_models = [None] # Models tested with the @slow decorator invalid_inputs = [4, ""] mandatory_keys = ["translation_text"] @is_pipeline_test class TranslationNewFormatPipelineTests(unittest.TestCase): @require_torch @slow def test_default_translations(self): # We don't provide a default for this pair with self.assertRaises(ValueError): pipeline(task="translation_cn_to_ar") # but we do for this one translator = pipeline(task="translation_en_to_de") self.assertEquals(translator.src_lang, "en") self.assertEquals(translator.tgt_lang, "de") @require_torch @slow def test_multilingual_translation(self): model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt") tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt") translator = pipeline(task="translation", model=model, tokenizer=tokenizer) # Missing src_lang, tgt_lang with self.assertRaises(ValueError): translator("This is a test") outputs = translator("This is a test", src_lang="en_XX", tgt_lang="ar_AR") self.assertEqual(outputs, [{"translation_text": "هذا إختبار"}]) outputs = translator("This is a test", src_lang="en_XX", tgt_lang="hi_IN") self.assertEqual(outputs, [{"translation_text": "यह एक परीक्षण है"}]) # src_lang, tgt_lang can be defined at pipeline call time translator = pipeline(task="translation", model=model, tokenizer=tokenizer, src_lang="en_XX", tgt_lang="ar_AR") outputs = translator("This is a test") self.assertEqual(outputs, [{"translation_text": "هذا إختبار"}]) @require_torch def test_translation_on_odd_language(self): model = "patrickvonplaten/t5-tiny-random" translator = pipeline(task="translation_cn_to_ar", model=model) self.assertEquals(translator.src_lang, "cn") self.assertEquals(translator.tgt_lang, "ar") @require_torch def test_translation_default_language_selection(self): model = "patrickvonplaten/t5-tiny-random" with pytest.warns(UserWarning, match=r".*translation_en_to_de.*"): translator = pipeline(task="translation", model=model) self.assertEqual(translator.task, "translation_en_to_de") self.assertEquals(translator.src_lang, "en") self.assertEquals(translator.tgt_lang, "de") @require_torch def test_translation_with_no_language_no_model_fails(self): with self.assertRaises(ValueError): pipeline(task="translation")