import json from typing import Any, Optional import torch import torch.nn as nn import torch.nn.functional as F from accelerate import init_empty_weights from huggingface_hub import HfApi from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.quantizers import HfQuantizer, get_module_from_name, register_quantization_config, register_quantizer from transformers.utils.quantization_config import QuantizationConfigMixin # Implement INT8 Symmetric Linear layer class Int8SymmetricLinear(torch.nn.Module): def __init__(self, in_features, out_features, bias, dtype=torch.float32): super().__init__() self.in_features = in_features self.out_features = out_features self.register_buffer("weight", torch.zeros((out_features, in_features), dtype=torch.int8)) self.register_buffer("weight_scale", torch.zeros((out_features, 1), dtype=dtype)) if bias: self.register_buffer("bias", torch.zeros((self.out_features), dtype=dtype)) else: self.bias = None def forward(self, x): dequant_weight = self.weight * self.weight_scale output = F.linear(x, dequant_weight) if self.bias is not None: output = output + self.bias return output # Function to replace standard linear layers with INT8 symmetric quantized layers def _replace_with_int8_symmetric_linear( model, modules_to_not_convert=None, current_key_name=None, quantization_config=None, has_been_replaced=False, pre_quantized=False, ): """ Recursively replaces nn.Linear modules with Int8SymmetricLinear modules. """ if current_key_name is None: current_key_name = [] for name, module in model.named_children(): current_key_name.append(name) if (isinstance(module, nn.Linear)) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` current_key_name_str = ".".join(current_key_name) if not any( (key + "." in current_key_name_str) or (key == current_key_name_str) for key in modules_to_not_convert ): with init_empty_weights(include_buffers=True): in_features = module.in_features out_features = module.out_features model._modules[name] = Int8SymmetricLinear( in_features, out_features, module.bias is not None, dtype=module.weight.dtype ) has_been_replaced = True model._modules[name].requires_grad_(False) if len(list(module.children())) > 0: _, has_been_replaced = _replace_with_int8_symmetric_linear( module, modules_to_not_convert, current_key_name, quantization_config, has_been_replaced=has_been_replaced, pre_quantized=pre_quantized, ) # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced def replace_with_int8_symmetric_linear( model, modules_to_not_convert=None, current_key_name=None, quantization_config=None, pre_quantized=False ): """ Main function to replace model layers with INT8 symmetric quantized versions. """ modules_to_not_convert = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert if quantization_config.modules_to_not_convert is not None: modules_to_not_convert.extend(quantization_config.modules_to_not_convert) modules_to_not_convert = list(set(modules_to_not_convert)) model, has_been_replaced = _replace_with_int8_symmetric_linear( model, modules_to_not_convert, current_key_name, quantization_config, pre_quantized=pre_quantized ) if not has_been_replaced: raise ValueError( "You are loading your model using INT8 symmetric quantization but no linear modules were found in your model." ) return model @register_quantization_config("int8_symmetric") class Int8SymmetricConfig(QuantizationConfigMixin): """ Configuration for INT8 symmetric quantization. """ def __init__(self, modules_to_not_convert: Optional[list[str]] = None, **kwargs): self.quant_method = "int8_symmetric" self.modules_to_not_convert = modules_to_not_convert def __repr__(self): config_dict = self.to_dict() return f"{self.__class__.__name__} {json.dumps(config_dict, indent=2, sort_keys=True)}\n" def to_diff_dict(self) -> dict[str, Any]: config_dict = self.to_dict() default_config_dict = Int8SymmetricConfig().to_dict() serializable_config_dict = {} for key, value in config_dict.items(): if value != default_config_dict[key]: serializable_config_dict[key] = value return serializable_config_dict @register_quantizer("int8_symmetric") class Int8SymmetricQuantizer(HfQuantizer): """ Implementation of INT8 symmetric quantization. """ requires_calibration = False requires_parameters_quantization = True def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): super().__init__(quantization_config, **kwargs) self.quantization_config = quantization_config def _process_model_before_weight_loading(self, model, **kwargs): """ Replace model's linear layers with quantized versions before loading weights. """ self.modules_to_not_convert = self.quantization_config.modules_to_not_convert model = replace_with_int8_symmetric_linear( model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config, pre_quantized=self.pre_quantized, ) def check_quantized_param( self, model, param_value: "torch.Tensor", param_name: str, state_dict: dict[str, Any], **kwargs, ): module, tensor_name = get_module_from_name(model, param_name) if isinstance(module, Int8SymmetricLinear): if self.pre_quantized or tensor_name == "bias": if tensor_name == "weight" and param_value.dtype != torch.int8: raise ValueError("Expect quantized weights but got an unquantized weight") return False else: if tensor_name == "weight_scale": raise ValueError("Expect unquantized weights but got a quantized weight_scale") return True return False def create_quantized_param( self, model, param_value: "torch.Tensor", param_name: str, target_device: "torch.device", state_dict: dict[str, Any], unexpected_keys: Optional[list[str]] = None, ): """ Quantizes weights to INT8 symmetric format. """ abs_max_per_row = torch.max(torch.abs(param_value), dim=1, keepdim=True)[0].clamp(min=1e-5) weight_scale = abs_max_per_row / 127.0 weight_quantized = torch.round(param_value / weight_scale).clamp(-128, 127).to(torch.int8) module, tensor_name = get_module_from_name(model, param_name) module._buffers[tensor_name] = weight_quantized.to(target_device) module._buffers["weight_scale"] = weight_scale.to(target_device) def update_missing_keys(self, model, missing_keys: list[str], prefix: str) -> list[str]: not_missing_keys = [] for name, module in model.named_modules(): if isinstance(module, Int8SymmetricLinear): for missing in missing_keys: if ( (name in missing or name in f"{prefix}.{missing}") and not missing.endswith(".weight") and not missing.endswith(".bias") ): not_missing_keys.append(missing) return [k for k in missing_keys if k not in not_missing_keys] def _process_model_after_weight_loading(self, model, **kwargs): """ Post-processing after weights are loaded. """ return True def is_serializable(self, safe_serialization=None): return True @property def is_trainable(self) -> bool: return False # Example usage if __name__ == "__main__": model_int8 = AutoModelForCausalLM.from_pretrained( "meta-llama/Llama-3.2-1B", quantization_config=Int8SymmetricConfig(), torch_dtype=torch.float, device_map="cpu" ) tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B") input_text = "once there is" inputs = tokenizer(input_text, return_tensors="pt").to("cpu") output = model_int8.generate( **inputs, max_length=100, num_return_sequences=1, no_repeat_ngram_size=2, ) generated_text = tokenizer.decode(output[0], skip_special_tokens=True) print(generated_text) # Save and upload to HUB output_model_dir = "Llama-3.2-1B-INT8-CUSTOM" model_int8.save_pretrained(output_model_dir) tokenizer.save_pretrained(output_model_dir) api = HfApi() repo_id = "medmekk/Llama-3.2-1B-INT8-CUSTOM" api.create_repo(repo_id, private=False) api.upload_folder(folder_path=output_model_dir, repo_id=repo_id, repo_type="model")