# Copyright 2023 Microsoft Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch KOSMOS-2 model.""" import copy import inspect import os import tempfile import unittest import numpy as np import pytest import requests from parameterized import parameterized from transformers import AutoModelForImageTextToText, AutoProcessor, Kosmos2Config from transformers.models.kosmos2.configuration_kosmos2 import Kosmos2TextConfig, Kosmos2VisionConfig from transformers.testing_utils import ( IS_ROCM_SYSTEM, IS_XPU_SYSTEM, require_torch, require_torch_sdpa, require_vision, slow, torch_device, ) from transformers.utils import ( is_torch_available, is_vision_available, ) from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( TEST_EAGER_MATCHES_SDPA_INFERENCE_PARAMETERIZATION, ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, random_attention_mask, ) from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import Kosmos2ForConditionalGeneration, Kosmos2Model if is_vision_available(): from PIL import Image class Kosmos2VisionModelTester: def __init__( self, parent, batch_size=12, image_size=32, patch_size=4, num_channels=3, is_training=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, initializer_range=1e-10, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.scope = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) config = self.get_config() return config, pixel_values def get_config(self): return Kosmos2VisionConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, initializer_range=self.initializer_range, ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict class Kosmos2TextModelTester: def __init__( self, parent, batch_size=12, seq_length=7, is_training=True, use_input_mask=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, max_position_embeddings=512, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.max_position_embeddings = max_position_embeddings self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) if input_mask is not None: batch_size, seq_length = input_mask.shape rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(rnd_start_indices): input_mask[batch_idx, :start_index] = 1 input_mask[batch_idx, start_index:] = 0 config = self.get_config() return config, input_ids, input_mask def get_config(self): return Kosmos2TextConfig( vocab_size=self.vocab_size, embed_dim=self.hidden_size, layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, input_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict class Kosmos2ModelTester: def __init__(self, parent, text_kwargs=None, vision_kwargs=None, latent_query_num=3, is_training=True): if text_kwargs is None: text_kwargs = {} if vision_kwargs is None: vision_kwargs = {} self.parent = parent self.text_model_tester = Kosmos2TextModelTester(parent, **text_kwargs) self.vision_model_tester = Kosmos2VisionModelTester(parent, **vision_kwargs) self.batch_size = self.text_model_tester.batch_size # need bs for batching_equivalence test self.seq_length = self.text_model_tester.seq_length self.latent_query_num = latent_query_num self.is_training = is_training def prepare_config_and_inputs(self): text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs() # build `image_embeds_position_mask` image_embeds_position_mask = torch.zeros_like(input_ids) image_embeds_position_mask[:, 1 : 1 + self.latent_query_num :] = 1 config = self.get_config() return config, input_ids, attention_mask, image_embeds_position_mask, pixel_values def get_config(self): return Kosmos2Config( self.text_model_tester.get_config().to_dict(), self.vision_model_tester.get_config().to_dict(), latent_query_num=self.latent_query_num, ) def create_and_check_model(self, config, input_ids, attention_mask, image_embeds_position_mask, pixel_values): model = Kosmos2Model(config).to(torch_device).eval() with torch.no_grad(): result = model(pixel_values, input_ids, image_embeds_position_mask, attention_mask) self.parent.assertEqual( result.last_hidden_state.shape, (self.text_model_tester.batch_size, self.text_model_tester.seq_length, self.text_model_tester.hidden_size), ) self.parent.assertEqual( result.image_embeds.shape, (self.text_model_tester.batch_size, self.latent_query_num, self.text_model_tester.hidden_size), ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask, image_embeds_position_mask, pixel_values = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, "image_embeds_position_mask": image_embeds_position_mask, "pixel_values": pixel_values, } return config, inputs_dict @require_torch class Kosmos2ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (Kosmos2Model, Kosmos2ForConditionalGeneration) if is_torch_available() else () additional_model_inputs = ["input_ids", "image_embeds_position_mask"] pipeline_model_mapping = ( { "feature-extraction": Kosmos2Model, "image-to-text": Kosmos2ForConditionalGeneration, "image-text-to-text": Kosmos2ForConditionalGeneration, } if is_torch_available() else {} ) fx_compatible = False test_head_masking = False test_pruning = False test_resize_embeddings = False test_attention_outputs = False _is_composite = True # TODO: `image-to-text` pipeline for this model needs Processor. # TODO: Tiny model needs fixing for `image-text-to-text` (latent_query_num=3 not compatible with num_image_tokens=64). def is_pipeline_test_to_skip( self, pipeline_test_case_name, config_class, model_architecture, tokenizer_name, image_processor_name, feature_extractor_name, processor_name, ): return ( pipeline_test_case_name == "ImageToTextPipelineTests" or pipeline_test_case_name == "ImageTextToTextPipelineTests" ) def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = copy.deepcopy(inputs_dict) if return_labels: if model_class.__name__ == "Kosmos2ForConditionalGeneration": inputs_dict["labels"] = torch.zeros( (self.model_tester.text_model_tester.batch_size, self.model_tester.text_model_tester.seq_length), dtype=torch.long, device=torch_device, ) return inputs_dict def setUp(self): self.model_tester = Kosmos2ModelTester(self) self.config_tester = ConfigTester( self, config_class=Kosmos2Config, has_text_modality=False, common_properties=["latent_query_num"] ) def test_config(self): self.config_tester.run_common_tests() # overwrite from common to skip `image_to_text_projection.latent_query` def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: if name == "image_to_text_projection.latent_query": # The original code use ` nn.Parameter(torch.randn(...))` for which this test won't pass. continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_load_save_without_tied_weights(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() config.text_config.tie_word_embeddings = False for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as d: model.save_pretrained(d) model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True) # Checking the state dicts are correct reloaded_state = model_reloaded.state_dict() for k, v in model.state_dict().items(): self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded") torch.testing.assert_close( v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}" ) # Checking there was no complain of missing weights self.assertEqual(infos["missing_keys"], []) # overwrite from common in order to use `self.model_tester.text_model_tester.num_hidden_layers` def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.text_model_tester.num_hidden_layers + 1, ) self.assertEqual(len(hidden_states), expected_num_layers) seq_length = self.model_tester.text_model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.text_model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) # overwrite from common in order to use `config.text_config.vocab_size` instead of `config.vocab_size` def test_tie_model_weights(self): if not self.test_torchscript: self.skipTest(reason="test_torchscript is set to False") config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_same_values(layer_1, layer_2): equal = True for p1, p2 in zip(layer_1.weight, layer_2.weight): if p1.data.ne(p2.data).sum() > 0: equal = False return equal for model_class in self.all_model_classes: config.torchscript = True model_not_tied = model_class(config) if model_not_tied.get_output_embeddings() is None: continue config_tied = copy.deepcopy(config) config_tied.torchscript = False model_tied = model_class(config_tied) params_tied = list(model_tied.parameters()) # Check that the embedding layer and decoding layer are the same in size and in value # self.assertTrue(check_same_values(embeddings, decoding)) # # Check that after modification, they remain the same. # embeddings.weight.data.div_(2) # # Check that the embedding layer and decoding layer are the same in size and in value # self.assertTrue(embeddings.weight.shape, decoding.weight.shape) # self.assertTrue(check_same_values(embeddings, decoding)) # # Check that after modification, they remain the same. # decoding.weight.data.div_(4) # # Check that the embedding layer and decoding layer are the same in size and in value # self.assertTrue(embeddings.weight.shape, decoding.weight.shape) # self.assertTrue(check_same_values(embeddings, decoding)) # Check that after resize they remain tied. model_tied.resize_token_embeddings(config.text_config.vocab_size + 10) params_tied_2 = list(model_tied.parameters()) self.assertEqual(len(params_tied_2), len(params_tied)) # decoding.weight.data.mul_(20) # # Check that the embedding layer and decoding layer are the same in size and in value # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape) # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head)) @parameterized.expand(TEST_EAGER_MATCHES_SDPA_INFERENCE_PARAMETERIZATION) @require_torch_sdpa @unittest.skip("KOSMOS-2 doesn't support padding") def test_eager_matches_sdpa_inference( self, name, torch_dtype, padding_side, use_attention_mask, output_attentions, enable_kernels ): pass @pytest.mark.generate def test_left_padding_compatibility(self): # Overwrite because Kosmos-2 need to padd pixel values and pad image-attn-mask def _prepare_model_kwargs(input_ids, attention_mask, pad_size, signature): model_kwargs = {"input_ids": input_ids, "attention_mask": attention_mask} if "position_ids" in signature: position_ids = torch.cumsum(attention_mask, dim=-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) model_kwargs["position_ids"] = position_ids if "cache_position" in signature: cache_position = torch.arange(input_ids.shape[-1], device=torch_device) model_kwargs["cache_position"] = cache_position if "image_embeds_position_mask" in signature: image_embeds_position_mask = torch.zeros_like(input_ids) image_embeds_position_mask[:, (pad_size + 1) : pad_size + 1 + self.model_tester.latent_query_num] = 1 model_kwargs["image_embeds_position_mask"] = image_embeds_position_mask return model_kwargs for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() input_ids = inputs_dict["input_ids"] pixel_values = inputs_dict["pixel_values"] attention_mask = inputs_dict.get("attention_mask") if attention_mask is None: attention_mask = torch.ones_like(input_ids) model = model_class(config).to(torch_device).eval() signature = inspect.signature(model.forward).parameters.keys() # no cache as some models require special cache classes to be init outside forward model.generation_config.use_cache = False # Without padding model_kwargs = _prepare_model_kwargs(input_ids, attention_mask, pad_size=0, signature=signature) next_logits_wo_padding = model(**model_kwargs, pixel_values=pixel_values).logits[:, -1, :] # With left-padding (length 32) # can hardcode pad_token to be 0 as we'll do attn masking anyway pad_token_id = ( config.get_text_config().pad_token_id if config.get_text_config().pad_token_id is not None else 0 ) pad_size = (input_ids.shape[0], 32) padding = torch.ones(pad_size, dtype=input_ids.dtype, device=torch_device) * pad_token_id padded_input_ids = torch.cat((padding, input_ids), dim=1) padded_attention_mask = torch.cat((torch.zeros_like(padding), attention_mask), dim=1) model_kwargs = _prepare_model_kwargs( padded_input_ids, padded_attention_mask, pad_size=32, signature=signature ) next_logits_with_padding = model(**model_kwargs, pixel_values=pixel_values).logits[:, -1, :] # They should result in very similar logits torch.testing.assert_close(next_logits_wo_padding, next_logits_with_padding, rtol=1e-3, atol=1e-3) @slow def test_model_from_pretrained(self): model_name = "microsoft/kosmos-2-patch14-224" model = Kosmos2Model.from_pretrained(model_name) self.assertIsNotNone(model) def _create_and_check_torchscript(self, config, inputs_dict): if not self.test_torchscript: self.skipTest(reason="test_torchscript is set to False") configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.torchscript = True for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() inputs = self._prepare_for_class(inputs_dict, model_class) main_input_name = model_class.main_input_name try: main_input = inputs[main_input_name] model(main_input, inputs["input_ids"], inputs["image_embeds_position_mask"]) traced_model = torch.jit.trace( model, (main_input, inputs["input_ids"], inputs["image_embeds_position_mask"]) ) except RuntimeError: self.fail("Couldn't trace module.") with tempfile.TemporaryDirectory() as tmp_dir_name: pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") try: torch.jit.save(traced_model, pt_file_name) except Exception: self.fail("Couldn't save module.") try: loaded_model = torch.jit.load(pt_file_name) except Exception: self.fail("Couldn't load module.") model.to(torch_device) model.eval() loaded_model.to(torch_device) loaded_model.eval() model_state_dict = model.state_dict() loaded_model_state_dict = loaded_model.state_dict() non_persistent_buffers = {} for key in loaded_model_state_dict.keys(): if key not in model_state_dict.keys(): non_persistent_buffers[key] = loaded_model_state_dict[key] loaded_model_state_dict = { key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers } self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) model_buffers = list(model.buffers()) for non_persistent_buffer in non_persistent_buffers.values(): found_buffer = False for i, model_buffer in enumerate(model_buffers): if torch.equal(non_persistent_buffer, model_buffer): found_buffer = True break self.assertTrue(found_buffer) model_buffers.pop(i) models_equal = True for layer_name, p1 in model_state_dict.items(): if layer_name in loaded_model_state_dict: p2 = loaded_model_state_dict[layer_name] if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) # Avoid memory leak. Without this, each call increase RAM usage by ~20MB. # (Even with this call, there are still memory leak by ~0.04MB) self.clear_torch_jit_class_registry() @pytest.mark.generate @parameterized.expand([("greedy", 1), ("beam search", 2)]) def test_generate_from_inputs_embeds(self, _, num_beams): """Tests that we can generate from `inputs_embeds` instead of `input_ids` in LLMs, VLMs, etc""" # NOTE: overwritten because Kosmos with ids prepares position ids differently from embeds # If the model get ids, all pad tokens are masked from position ids. That is not possible with embeds # When supported, tests that the decoder model can generate from `inputs_embeds` instead of `input_ids` # if fails, you should probably update the `prepare_inputs_for_generation` function for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() config.is_decoder = True # Skip models without explicit support model = model_class(config).to(torch_device).eval() # Traditional way of generating text input_ids = inputs_dict.pop("input_ids") input_ids[input_ids == config.get_text_config().pad_token_id] = 0 generation_kwargs = { "return_dict_in_generate": True, "output_scores": True, "num_beams": num_beams, "do_sample": False, "max_new_tokens": 5, "min_new_tokens": 5, # generate exactly 5 tokens "use_cache": True, } outputs_from_ids = model.generate(input_ids=input_ids, **generation_kwargs, **inputs_dict) self.assertEqual(outputs_from_ids.sequences.shape[:2], (input_ids.shape[0], input_ids.shape[1] + 5)) # Same thing, but from input embeddings (`input_ids` is passed so the prompt is present in the output). # The output of the two calls should be the same. inputs_embeds = model.get_input_embeddings()(input_ids) outputs_from_embeds = model.generate( input_ids=input_ids, inputs_embeds=inputs_embeds, **generation_kwargs, **inputs_dict ) self._check_similar_generate_outputs(outputs_from_ids, outputs_from_embeds) # input_ids is not a required input on most models -- if we don't pass it, the newly generated tokens will # be the same outputs_from_embeds_wo_ids = model.generate( inputs_embeds=inputs_embeds, **generation_kwargs, **inputs_dict ) outputs_from_embeds.sequences = outputs_from_embeds.sequences[:, inputs_embeds.shape[1] :] self._check_similar_generate_outputs(outputs_from_embeds_wo_ids, outputs_from_embeds) # We will verify our results on an image of cute cats def prepare_img(): url = "https://huggingface.co/hf-internal-testing/Kosmos2-test-image/resolve/main/demo.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @require_vision @require_torch @slow class Kosmos2ModelIntegrationTest(unittest.TestCase): def run_example(self, prompt, image, model, processor): inputs = processor(text=prompt, images=image, return_tensors="pt", padding=True).to(torch_device) generation_outputs = model.generate( pixel_values=inputs["pixel_values"], input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], image_embeds=None, image_embeds_position_mask=inputs["image_embeds_position_mask"], use_cache=True, max_new_tokens=128, output_scores=True, return_dict_in_generate=True, ) scores = generation_outputs.scores generated_ids = generation_outputs.sequences generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) # Specify `cleanup_and_extract=False` in order to see the raw model generation. processed_text = [processor.post_process_generation(x, cleanup_and_extract=False) for x in generated_text] # By default, the generated text is cleanup and the entities are extracted. final_text_with_entities = [processor.post_process_generation(x) for x in generated_text] return scores, generated_ids, generated_text, processed_text, final_text_with_entities def test_snowman_image_captioning(self): url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.png" image = Image.open(requests.get(url, stream=True).raw) image.save("new_image.jpg") image = Image.open("new_image.jpg") model = AutoModelForImageTextToText.from_pretrained("microsoft/kosmos-2-patch14-224").to(torch_device) processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224") prompt = "An image of" scores, generated_ids, generated_text, processed_text, final_text_with_entities = self.run_example( prompt, image, model, processor ) processed_text = processed_text[0] final_text, entities = final_text_with_entities[0] atol = 1e-4 if (IS_ROCM_SYSTEM or IS_XPU_SYSTEM) else 1e-5 np.testing.assert_allclose( torch.concat(scores[1:4])[:3, :3].to("cpu").numpy(), np.array( [ [-1.5672581195831299, -5.007406711578369, 4.36448860168457], [-2.147017002105713, -4.966302871704102, 4.592559337615967], [-0.9352350831031799, -4.688288688659668, 6.240612983703613], ] ), atol=atol, ) np.testing.assert_allclose( torch.concat(scores[-3:])[-3:, -3:].to("cpu").numpy(), np.array( [ [2.9916205406188965, 2.481820583343506, 4.646594524383545], [-2.8381078243255615, -2.9687185287475586, -2.6926779747009277], [-2.8909168243408203, -3.2228589057922363, -1.7056822776794434], ] ), atol=1e-5, ) # fmt: off EXPECTED_IDS = [ [ 0, 64003, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 64004, 64012, 712, 1648, 9, 64007, 10, 43867, 64008, 64009, 64057, 64876, 64010, 5950, 597, 32, 64007, 10, 646, 64008, 64009, 64018, 64924, 64010, 4, 2 ] ] # fmt: on self.assertListEqual(generated_ids.to("cpu").numpy().tolist(), EXPECTED_IDS) EXPECTED_PROCESSED_TEXT = ( " An image of a snowman " "warming himself by a fire." ) self.assertEqual(processed_text, EXPECTED_PROCESSED_TEXT) self.assertEqual(final_text, "An image of a snowman warming himself by a fire.") EXPECTED_ENTITIES = [ ("a snowman", (12, 21), [(0.390625, 0.046875, 0.984375, 0.828125)]), ("a fire", (41, 47), [(0.171875, 0.015625, 0.484375, 0.890625)]), ] self.assertListEqual(entities, EXPECTED_ENTITIES) # test with the detail caption generation prompt = "Describe this image in detail:" scores, generated_ids, generated_text, processed_text, final_text_with_entities = self.run_example( prompt, image, model, processor ) processed_text = processed_text[0] final_text, entities = final_text_with_entities[0] np.testing.assert_allclose( torch.concat(scores[1:4])[:3, :3].to("cpu").numpy(), np.array( [ [-0.9093570113182068, -4.578373908996582, 5.96360969543457], [2.452126979827881, -4.090598106384277, 8.738677024841309], [-0.7624598741531372, -4.771658897399902, 6.576295852661133], ] ), atol=atol, ) np.testing.assert_allclose( torch.concat(scores[-3:])[-3:, -3:].to("cpu").numpy(), np.array( [ [-1.673659086227417, -2.162452220916748, -1.95430588722229], [-2.006824493408203, -2.2038745880126953, -1.24686861038208], [-3.2783470153808594, -2.814181089401245, -1.390632152557373], ] ), atol=1e-5, ) # fmt: off EXPECTED_IDS_LONG = [ [ 0, 64003, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 64004, 64012, 34645, 247, 38, 1648, 12, 3391, 55, 24, 1648, 1338, 10, 43867, 1280, 32, 64007, 10, 30879, 64008, 64009, 64018, 65020, 64010, 12, 5, 1842, 4, 71, 17, 1679, 64007, 10, 3958, 64008, 64009, 64061, 64263, 64010, 6, 64007, 15719, 64008, 64009, 64253, 64617, 64010, 6, 8, 64007, 9626, 64008, 64009, 64413, 64545, 64010, 6, 23, 64007, 10, 4363, 64008, 64009, 64623, 64885, 64010, 2255, 8, 64007, 10, 3486, 64008, 64009, 64809, 65036, 64010, 1560, 2255, 4, 24, 43867, 1684, 7, 27, 3774, 5, 10356, 9, 5, 646, 6, 8, 22, 1684, 7, 30, 10, 2007, 8, 16239, 4337, 4, 2 ] ] # fmt: on self.assertListEqual(generated_ids.to("cpu").numpy().tolist(), EXPECTED_IDS_LONG) EXPECTED_PROCESSED_TEXT_LONG = ( " Describe this image in detail: The image features a snowman sitting by a campfire" " in the snow. He is wearing a hat" ", scarf" ", and gloves" ", with a pot" " nearby and a cup placed " "nearby. The snowman appears to be enjoying the warmth of the fire, and it appears to have a warm and cozy " "atmosphere." ) self.assertEqual(processed_text, EXPECTED_PROCESSED_TEXT_LONG) EXPECTED_FINAL_TEXT_LONG = ( "Describe this image in detail: The image features a snowman sitting by a campfire in the snow. He is " "wearing a hat, scarf, and gloves, with a pot nearby and a cup placed nearby. The snowman appears to be " "enjoying the warmth of the fire, and it appears to have a warm and cozy atmosphere." ) self.assertEqual(final_text, EXPECTED_FINAL_TEXT_LONG) EXPECTED_ENTITIES_LONG = [ ("a campfire", (71, 81), [(0.171875, 0.015625, 0.484375, 0.984375)]), ("a hat", (109, 114), [(0.515625, 0.046875, 0.828125, 0.234375)]), ("scarf", (116, 121), [(0.515625, 0.234375, 0.890625, 0.578125)]), ("gloves", (127, 133), [(0.515625, 0.390625, 0.640625, 0.515625)]), ("a pot", (140, 145), [(0.078125, 0.609375, 0.265625, 0.859375)]), ("a cup", (157, 162), [(0.890625, 0.765625, 0.984375, 0.984375)]), ] self.assertListEqual(entities, EXPECTED_ENTITIES_LONG) def test_snowman_image_captioning_batch(self): url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.png" image = Image.open(requests.get(url, stream=True).raw) image.save("new_image.jpg") image = Image.open("new_image.jpg") model = AutoModelForImageTextToText.from_pretrained("microsoft/kosmos-2-patch14-224").to(torch_device) prompt = ["Describe this image in detail:", "An image of"] # left padding processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224", padding_side="left") scores, generated_ids, generated_text, processed_text, final_text_with_entities = self.run_example( prompt, [image] * len(prompt), model, processor ) all_final_text = [x[0] for x in final_text_with_entities] all_entities = [x[1] for x in final_text_with_entities] # left padding gives identical results as non-padding EXPECTED_PROCESSED_TEXT_0 = ( " Describe this image in detail: The image features a snowman sitting by a campfire" " in the snow. He is wearing a hat" ", scarf" ", and gloves" ", with a pot" " nearby and a cup placed " "nearby. The snowman appears to be enjoying the warmth of the fire, and it appears to have a warm and cozy " "atmosphere." ) EXPECTED_PROCESSED_TEXT_1 = ( " An image of a snowman " "warming himself by a fire." ) self.assertListEqual(processed_text, [EXPECTED_PROCESSED_TEXT_0, EXPECTED_PROCESSED_TEXT_1]) EXPECTED_FINAL_TEXT_0 = ( "Describe this image in detail: The image features a snowman sitting by a campfire in the snow. He is " "wearing a hat, scarf, and gloves, with a pot nearby and a cup placed nearby. The snowman appears to be " "enjoying the warmth of the fire, and it appears to have a warm and cozy atmosphere." ) EXPECTED_FINAL_TEXT_1 = "An image of a snowman warming himself by a fire." self.assertListEqual(all_final_text, [EXPECTED_FINAL_TEXT_0, EXPECTED_FINAL_TEXT_1]) EXPECTED_ENTITIES_0 = [ ("a campfire", (71, 81), [(0.171875, 0.015625, 0.484375, 0.984375)]), ("a hat", (109, 114), [(0.515625, 0.046875, 0.828125, 0.234375)]), ("scarf", (116, 121), [(0.515625, 0.234375, 0.890625, 0.578125)]), ("gloves", (127, 133), [(0.515625, 0.390625, 0.640625, 0.515625)]), ("a pot", (140, 145), [(0.078125, 0.609375, 0.265625, 0.859375)]), ("a cup", (157, 162), [(0.890625, 0.765625, 0.984375, 0.984375)]), ] EXPECTED_ENTITIES_1 = [ ("a snowman", (12, 21), [(0.390625, 0.046875, 0.984375, 0.828125)]), ("a fire", (41, 47), [(0.171875, 0.015625, 0.484375, 0.890625)]), ] self.assertListEqual(all_entities, [EXPECTED_ENTITIES_0, EXPECTED_ENTITIES_1]) # right padding processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224") scores, generated_ids, generated_text, processed_text, final_text_with_entities = self.run_example( prompt, [image] * len(prompt), model, processor ) all_final_text = [x[0] for x in final_text_with_entities] all_entities = [x[1] for x in final_text_with_entities] # For right padding, only the non-padded sequences will give the same results as non-padding self.assertEqual(processed_text[0], EXPECTED_PROCESSED_TEXT_0) self.assertEqual(all_final_text[0], EXPECTED_FINAL_TEXT_0) self.assertListEqual(all_entities[0], EXPECTED_ENTITIES_0) @slow def test_inference_interpolate_pos_encoding(self): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. model = Kosmos2Model.from_pretrained("microsoft/kosmos-2-patch14-224").to(torch_device) processor = AutoProcessor.from_pretrained( "microsoft/kosmos-2-patch14-224", size={"shortest_edge": 180}, crop_size={"height": 180, "width": 180} ) image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") inputs = processor(text="what's in the image", images=image, return_tensors="pt").to(torch_device) # interpolate_pos_encodiung false should return value error with self.assertRaises(ValueError, msg="doesn't match model"): with torch.no_grad(): model(**inputs, interpolate_pos_encoding=False) # forward pass with torch.no_grad(): outputs = model(**inputs, interpolate_pos_encoding=True) # verify the logits expected_shape = torch.Size((1, 145, 1024)) self.assertEqual(outputs.vision_model_output.last_hidden_state.shape, expected_shape) expected_slice = torch.tensor( [[0.9148, -1.4148, 3.8040], [3.3443, 1.9478, 0.2080], [1.6604, 2.8184, -0.3618]] ).to(torch_device) torch.testing.assert_close( outputs.vision_model_output.last_hidden_state[0, :3, :3], expected_slice, rtol=1e-2, atol=1e-2 )