#!/usr/bin/env python3 import argparse import logging from tqdm import trange import torch import torch.nn.functional as F import numpy as np from pytorch_pretrained_bert import BertModel, BertTokenizer logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO) logger = logging.getLogger(__name__) def run_model(): parser = argparse.ArgumentParser() parser.add_argument('--model_name_or_path', type=str, default='bert-base-uncased', help='pretrained model name or path to local checkpoint') parser.add_argument("--seed", type=int, default=42) args = parser.parse_args() print(args) if args.batch_size == -1: args.batch_size = 1 assert args.nsamples % args.batch_size == 0 np.random.seed(args.seed) torch.random.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") tokenizer = BertTokenizer.from_pretrained(args.model_name_or_path) model = BertModel.from_pretrained(args.model_name_or_path) model.to(device) model.eval() if __name__ == '__main__': run_model()