from typing import ClassVar, List, Optional, Union import torch import torch.utils.checkpoint from torch import nn from transformers.models.paligemma.modeling_paligemma import PaliGemmaForConditionalGeneration from ...cache_utils import Cache class NewTaskModelForNewTask(PaliGemmaForConditionalGeneration): main_input_name: ClassVar[str] = "doc_input_ids" # transformers-related def __init__(self, config): super().__init__(config=config) self.embedding_dim = self.config.embedding_dim self.custom_text_proj = nn.Linear(self.config.text_config.hidden_size, self.embedding_dim) if self.language_model._tied_weights_keys is not None: self._tied_weights_keys = [f"model.language_model.{k}" for k in self.language_model._tied_weights_keys] self.post_init() def forward( self, input_ids: torch.LongTensor = None, pixel_values: torch.FloatTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None, token_type_ids: Optional[torch.LongTensor] = None, cache_position: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, num_logits_to_keep: int = 0, ): r""" Returns: """ vlm_outputs = super().forward( input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, token_type_ids=token_type_ids, cache_position=cache_position, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=True, return_dict=True, num_logits_to_keep=num_logits_to_keep, ) last_hidden_states = vlm_outputs.hidden_states[-1] # (batch_size, sequence_length, hidden_size) proj = self.custom_text_proj(last_hidden_states) # (batch_size, sequence_length, dim) # L2 normalization embeddings = proj / proj.norm(dim=-1, keepdim=True) # (batch_size, sequence_length, dim) embeddings = embeddings * attention_mask.unsqueeze(-1) # (batch_size, sequence_length, dim) return (embeddings,) + vlm_outputs def resize_token_embeddings( self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None, mean_resizing=True ) -> nn.Embedding: model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of, mean_resizing) # Update vocab size self.config.text_config.vocab_size = model_embeds.num_embeddings self.config.vocab_size = model_embeds.num_embeddings self.vocab_size = model_embeds.num_embeddings return model_embeds