# UPerNet ## Overview The UPerNet model was proposed in [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun. UPerNet is a general framework to effectively segment a wide range of concepts from images, leveraging any vision backbone like [ConvNeXt](convnext) or [Swin](swin). The abstract from the paper is the following: *Humans recognize the visual world at multiple levels: we effortlessly categorize scenes and detect objects inside, while also identifying the textures and surfaces of the objects along with their different compositional parts. In this paper, we study a new task called Unified Perceptual Parsing, which requires the machine vision systems to recognize as many visual concepts as possible from a given image. A multi-task framework called UPerNet and a training strategy are developed to learn from heterogeneous image annotations. We benchmark our framework on Unified Perceptual Parsing and show that it is able to effectively segment a wide range of concepts from images. The trained networks are further applied to discover visual knowledge in natural scenes.* drawing UPerNet framework. Taken from the original paper. This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code is based on OpenMMLab's mmsegmentation [here](https://github.com/open-mmlab/mmsegmentation/blob/master/mmseg/models/decode_heads/uper_head.py). ## Usage UPerNet is a general framework for semantic segmentation. It can be used with any vision backbone, like so: ```py from transformers import SwinConfig, UperNetConfig, UperNetForSemanticSegmentation backbone_config = SwinConfig(out_features=["stage1", "stage2", "stage3", "stage4"]) config = UperNetConfig(backbone_config=backbone_config) model = UperNetForSemanticSegmentation(config) ``` To use another vision backbone, like [ConvNeXt](convnext), simply instantiate the model with the appropriate backbone: ```py from transformers import ConvNextConfig, UperNetConfig, UperNetForSemanticSegmentation backbone_config = ConvNextConfig(out_features=["stage1", "stage2", "stage3", "stage4"]) config = UperNetConfig(backbone_config=backbone_config) model = UperNetForSemanticSegmentation(config) ``` Note that this will randomly initialize all the weights of the model. ## UperNetConfig [[autodoc]] UperNetConfig ## UperNetForSemanticSegmentation [[autodoc]] UperNetForSemanticSegmentation - forward