# coding=utf-8 # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the Wav2Vec2 tokenizer.""" import inspect import json import os import random import shutil import tempfile import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.wav2vec2 import Wav2Vec2Config, Wav2Vec2Tokenizer from transformers.models.wav2vec2.tokenization_wav2vec2 import VOCAB_FILES_NAMES from transformers.testing_utils import slow global_rng = random.Random() def floats_list(shape, scale=1.0, rng=None, name=None): """Creates a random float32 tensor""" if rng is None: rng = global_rng values = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class Wav2Vec2TokenizerTest(unittest.TestCase): tokenizer_class = Wav2Vec2Tokenizer def setUp(self): super().setUp() vocab = " | E T A O N I H S R D L U M W C F G Y P B V K ' X J Q Z".split(" ") vocab_tokens = dict(zip(vocab, range(len(vocab)))) self.special_tokens_map = {"pad_token": "", "unk_token": "", "bos_token": "", "eos_token": ""} self.tmpdirname = tempfile.mkdtemp() self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") def get_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return Wav2Vec2Tokenizer.from_pretrained(self.tmpdirname, **kwargs) def test_tokenizer_decode(self): # TODO(PVP) - change to facebook tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h") sample_ids = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, tokenizer.word_delimiter_token_id, 24, 22, 5, 77], ] tokens = tokenizer.decode(sample_ids[0]) batch_tokens = tokenizer.batch_decode(sample_ids) self.assertEqual(tokens, batch_tokens[0]) self.assertEqual(batch_tokens, ["HELLO", "BYE BYE"]) def test_tokenizer_decode_special(self): # TODO(PVP) - change to facebook tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h") sample_ids = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, tokenizer.word_delimiter_token_id, 24, 22, 5, 77], ] sample_ids_2 = [ [11, 5, 5, 5, 5, 5, 15, 15, 15, tokenizer.pad_token_id, 15, 8, 98], [ 24, 22, 5, tokenizer.pad_token_id, tokenizer.pad_token_id, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 24, 22, 5, 77, tokenizer.word_delimiter_token_id, ], ] batch_tokens = tokenizer.batch_decode(sample_ids) batch_tokens_2 = tokenizer.batch_decode(sample_ids_2) self.assertEqual(batch_tokens, batch_tokens_2) self.assertEqual(batch_tokens, ["HELLO", "BYE BYE"]) def test_tokenizer_decode_added_tokens(self): tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h") tokenizer.add_tokens(["!", "?"]) tokenizer.add_special_tokens({"cls_token": "$$$"}) sample_ids = [ [ 11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 32, 32, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34, ], [24, 22, 5, tokenizer.word_delimiter_token_id, 24, 22, 5, 77, tokenizer.pad_token_id, 34, 34], ] batch_tokens = tokenizer.batch_decode(sample_ids) self.assertEqual(batch_tokens, ["HELLO!?!?$$$", "BYE BYE$$$"]) def test_call(self): # Tests that all call wrap to encode_plus and batch_encode_plus tokenizer = self.get_tokenizer() # create three inputs of length 800, 1000, and 1200 speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs] # Test not batched input encoded_sequences_1 = tokenizer(speech_inputs[0], return_tensors="np").input_values encoded_sequences_2 = tokenizer(np_speech_inputs[0], return_tensors="np").input_values self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3)) # Test batched encoded_sequences_1 = tokenizer(speech_inputs, return_tensors="np").input_values encoded_sequences_2 = tokenizer(np_speech_inputs, return_tensors="np").input_values for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) def test_padding(self, max_length=50): def _input_values_have_equal_length(input_values): length = len(input_values[0]) for input_values_slice in input_values[1:]: if len(input_values_slice) != length: return False return True def _input_values_are_equal(input_values_1, input_values_2): if len(input_values_1) != len(input_values_2): return False for input_values_slice_1, input_values_slice_2 in zip(input_values_1, input_values_2): if not np.allclose(np.asarray(input_values_slice_1), np.asarray(input_values_slice_2), atol=1e-3): return False return True tokenizer = self.get_tokenizer() speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] input_values_1 = tokenizer(speech_inputs).input_values input_values_2 = tokenizer(speech_inputs, padding="longest").input_values input_values_3 = tokenizer(speech_inputs, padding="longest", max_length=1600).input_values self.assertFalse(_input_values_have_equal_length(input_values_1)) self.assertTrue(_input_values_have_equal_length(input_values_2)) self.assertTrue(_input_values_have_equal_length(input_values_3)) self.assertTrue(_input_values_are_equal(input_values_2, input_values_3)) self.assertTrue(len(input_values_1[0]) == 800) self.assertTrue(len(input_values_2[0]) == 1200) # padding should be 0.0 self.assertTrue(abs(sum(np.asarray(input_values_2[0])[800:])) < 1e-3) self.assertTrue(abs(sum(np.asarray(input_values_2[1])[1000:])) < 1e-3) input_values_4 = tokenizer(speech_inputs, padding="max_length").input_values input_values_5 = tokenizer(speech_inputs, padding="max_length", max_length=1600).input_values self.assertTrue(_input_values_are_equal(input_values_1, input_values_4)) self.assertTrue(input_values_5.shape, (3, 1600)) # padding should be 0.0 self.assertTrue(abs(sum(np.asarray(input_values_5[0])[800:1200])) < 1e-3) input_values_6 = tokenizer(speech_inputs, pad_to_multiple_of=500).input_values input_values_7 = tokenizer(speech_inputs, padding="longest", pad_to_multiple_of=500).input_values input_values_8 = tokenizer( speech_inputs, padding="max_length", pad_to_multiple_of=500, max_length=2400 ).input_values self.assertTrue(_input_values_are_equal(input_values_1, input_values_6)) self.assertTrue(input_values_7.shape, (3, 1500)) self.assertTrue(input_values_8.shape, (3, 2500)) # padding should be 0.0 self.assertTrue(abs(sum(np.asarray(input_values_7[0])[800:])) < 1e-3) self.assertTrue(abs(sum(np.asarray(input_values_7[1])[1000:])) < 1e-3) self.assertTrue(abs(sum(np.asarray(input_values_7[2])[1200:])) < 1e-3) self.assertTrue(abs(sum(np.asarray(input_values_8[0])[800:])) < 1e-3) self.assertTrue(abs(sum(np.asarray(input_values_8[1])[1000:])) < 1e-3) self.assertTrue(abs(sum(np.asarray(input_values_8[2])[1200:])) < 1e-3) def test_save_pretrained(self): pretrained_name = list(self.tokenizer_class.pretrained_vocab_files_map["vocab_file"].keys())[0] tokenizer = self.tokenizer_class.from_pretrained(pretrained_name) tmpdirname2 = tempfile.mkdtemp() tokenizer_files = tokenizer.save_pretrained(tmpdirname2) self.assertSequenceEqual( sorted(tuple(VOCAB_FILES_NAMES.values()) + ("special_tokens_map.json", "added_tokens.json")), sorted(tuple(x.split("/")[-1] for x in tokenizer_files)), ) # Checks everything loads correctly in the same way tokenizer_p = self.tokenizer_class.from_pretrained(tmpdirname2) # Check special tokens are set accordingly on Rust and Python for key in tokenizer.special_tokens_map: self.assertTrue(key in tokenizer_p.special_tokens_map) shutil.rmtree(tmpdirname2) def test_get_vocab(self): tokenizer = self.get_tokenizer() vocab_dict = tokenizer.get_vocab() self.assertIsInstance(vocab_dict, dict) self.assertGreaterEqual(len(tokenizer), len(vocab_dict)) vocab = [tokenizer.convert_ids_to_tokens(i) for i in range(len(tokenizer))] self.assertEqual(len(vocab), len(tokenizer)) tokenizer.add_tokens(["asdfasdfasdfasdf"]) vocab = [tokenizer.convert_ids_to_tokens(i) for i in range(len(tokenizer))] self.assertEqual(len(vocab), len(tokenizer)) def test_save_and_load_tokenizer(self): tokenizer = self.get_tokenizer() # Isolate this from the other tests because we save additional tokens/etc tmpdirname = tempfile.mkdtemp() sample_ids = [0, 1, 4, 8, 9, 0, 12] before_tokens = tokenizer.decode(sample_ids) before_vocab = tokenizer.get_vocab() tokenizer.save_pretrained(tmpdirname) after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) after_tokens = after_tokenizer.decode(sample_ids) after_vocab = after_tokenizer.get_vocab() self.assertEqual(before_tokens, after_tokens) self.assertDictEqual(before_vocab, after_vocab) shutil.rmtree(tmpdirname) tokenizer = self.get_tokenizer() # Isolate this from the other tests because we save additional tokens/etc tmpdirname = tempfile.mkdtemp() before_len = len(tokenizer) sample_ids = [0, 1, 4, 8, 9, 0, 12, before_len, before_len + 1, before_len + 2] tokenizer.add_tokens(["?", "!"]) additional_special_tokens = tokenizer.additional_special_tokens additional_special_tokens.append("&") tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens}) before_tokens = tokenizer.decode(sample_ids) before_vocab = tokenizer.get_vocab() tokenizer.save_pretrained(tmpdirname) after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) after_tokens = after_tokenizer.decode(sample_ids) after_vocab = after_tokenizer.get_vocab() self.assertEqual(before_tokens, after_tokens) self.assertDictEqual(before_vocab, after_vocab) self.assertTrue(len(tokenizer), before_len + 3) self.assertTrue(len(tokenizer), len(after_tokenizer)) shutil.rmtree(tmpdirname) def test_tokenizer_slow_store_full_signature(self): signature = inspect.signature(self.tokenizer_class.__init__) tokenizer = self.get_tokenizer() for parameter_name, parameter in signature.parameters.items(): if parameter.default != inspect.Parameter.empty: self.assertIn(parameter_name, tokenizer.init_kwargs) def test_zero_mean_unit_variance_normalization(self): tokenizer = self.get_tokenizer(do_normalize=True) speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] processed = tokenizer(speech_inputs, padding="longest") input_values = processed.input_values def _check_zero_mean_unit_variance(input_vector): self.assertTrue(np.abs(np.mean(input_vector)) < 1e-3) self.assertTrue(np.abs(np.var(input_vector) - 1) < 1e-3) _check_zero_mean_unit_variance(input_values[0, :800]) _check_zero_mean_unit_variance(input_values[1, :1000]) _check_zero_mean_unit_variance(input_values[2]) def test_return_attention_mask(self): speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] # default case -> no attention_mask is returned tokenizer = self.get_tokenizer() processed = tokenizer(speech_inputs) self.assertNotIn("attention_mask", processed) # wav2vec2-lv60 -> return attention_mask tokenizer = self.get_tokenizer(return_attention_mask=True) processed = tokenizer(speech_inputs, padding="longest") self.assertIn("attention_mask", processed) self.assertListEqual(list(processed.attention_mask.shape), list(processed.input_values.shape)) self.assertListEqual(processed.attention_mask.sum(-1).tolist(), [800, 1000, 1200]) @slow def test_pretrained_checkpoints_are_set_correctly(self): # this test makes sure that models that are using # group norm don't have their tokenizer return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: config = Wav2Vec2Config.from_pretrained(model_id) tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_id) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(tokenizer.return_attention_mask, config.feat_extract_norm == "layer")