# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import unittest from unittest.mock import patch from transformers.file_utils import is_apex_available from transformers.integrations import is_fairscale_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_gpu_count, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed bindir = os.path.abspath(os.path.dirname(__file__)) sys.path.append(f"{bindir}/../../seq2seq") from run_seq2seq import main # noqa set_seed(42) MARIAN_MODEL = "sshleifer/student_marian_en_ro_6_1" MBART_TINY = "sshleifer/tiny-mbart" # a candidate for testing_utils def require_fairscale(test_case): """ Decorator marking a test that requires fairscale """ if not is_fairscale_available(): return unittest.skip("test requires fairscale")(test_case) else: return test_case # a candidate for testing_utils def require_apex(test_case): """ Decorator marking a test that requires apex """ if not is_apex_available(): return unittest.skip("test requires apex")(test_case) else: return test_case class TestTrainerExt(TestCasePlus): def run_seq2seq_quick(self, distributed=False, extra_args_str=None): output_dir = self.run_trainer(1, "12", MBART_TINY, 1, distributed, extra_args_str) logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history eval_metrics = [log for log in logs if "eval_loss" in log.keys()] first_step_stats = eval_metrics[0] assert "eval_bleu" in first_step_stats @require_torch_non_multi_gpu def test_run_seq2seq_no_dist(self): self.run_seq2seq_quick() # verify that the trainer can handle non-distributed with n_gpu > 1 @require_torch_multi_gpu def test_run_seq2seq_dp(self): self.run_seq2seq_quick(distributed=False) # verify that the trainer can handle distributed with n_gpu > 1 @require_torch_multi_gpu def test_run_seq2seq_ddp(self): self.run_seq2seq_quick(distributed=True) # test --sharded_ddp w/o --fp16 @require_torch_multi_gpu @require_fairscale def test_run_seq2seq_ddp_sharded_ddp(self): self.run_seq2seq_quick(distributed=True, extra_args_str="--sharded_ddp") # test --sharded_ddp w/ --fp16 @require_torch_multi_gpu @require_fairscale def test_run_seq2seq_ddp_sharded_ddp_fp16(self): self.run_seq2seq_quick(distributed=True, extra_args_str="--sharded_ddp --fp16") @require_apex def test_run_seq2seq_apex(self): self.run_seq2seq_quick(extra_args_str="--fp16 --fp16_backend=apex") @slow def test_run_seq2seq_slow(self): # There is a missing call to __init__process_group somewhere output_dir = self.run_trainer( eval_steps=2, max_len="128", model_name=MARIAN_MODEL, num_train_epochs=10, distributed=False ) # Check metrics logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history eval_metrics = [log for log in logs if "eval_loss" in log.keys()] first_step_stats = eval_metrics[0] last_step_stats = eval_metrics[-1] assert first_step_stats["eval_bleu"] < last_step_stats["eval_bleu"] # model learned nothing assert isinstance(last_step_stats["eval_bleu"], float) # test if do_predict saves generations and metrics contents = os.listdir(output_dir) contents = {os.path.basename(p) for p in contents} assert "test_preds_seq2seq.txt" in contents assert "test_results.json" in contents def run_trainer( self, eval_steps: int, max_len: str, model_name: str, num_train_epochs: int, distributed: bool = False, extra_args_str: str = None, ): data_dir = self.examples_dir / "test_data/wmt_en_ro" output_dir = self.get_auto_remove_tmp_dir() args = f""" --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_val_samples 8 --max_source_length {max_len} --max_target_length {max_len} --val_max_target_length {max_len} --do_train --do_eval --do_predict --num_train_epochs {str(num_train_epochs)} --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --learning_rate 3e-3 --warmup_steps 8 --evaluation_strategy steps --predict_with_generate --logging_steps 0 --save_steps {str(eval_steps)} --eval_steps {str(eval_steps)} --group_by_length --label_smoothing_factor 0.1 --adafactor --task translation --target_lang ro_RO --source_lang en_XX """.split() if extra_args_str is not None: args.extend(extra_args_str.split()) if distributed: n_gpu = get_gpu_count() distributed_args = f""" -m torch.distributed.launch --nproc_per_node={n_gpu} {self.examples_dir_str}/seq2seq/run_seq2seq.py """.split() cmd = [sys.executable] + distributed_args + args execute_subprocess_async(cmd, env=self.get_env()) else: testargs = ["run_seq2seq.py"] + args with patch.object(sys, "argv", testargs): main() return output_dir