## Token classification Based on the scripts [`run_ner.py`](https://github.com/huggingface/transformers/blob/master/examples/contrib/legacy/token-classification/run_ner.py). The following examples are covered in this section: * NER on the GermEval 2014 (German NER) dataset * Emerging and Rare Entities task: WNUT’17 (English NER) dataset Details and results for the fine-tuning provided by @stefan-it. ### GermEval 2014 (German NER) dataset #### Data (Download and pre-processing steps) Data can be obtained from the [GermEval 2014](https://sites.google.com/site/germeval2014ner/data) shared task page. Here are the commands for downloading and pre-processing train, dev and test datasets. The original data format has four (tab-separated) columns, in a pre-processing step only the two relevant columns (token and outer span NER annotation) are extracted: ```bash curl -L 'https://drive.google.com/uc?export=download&id=1Jjhbal535VVz2ap4v4r_rN1UEHTdLK5P' \ | grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > train.txt.tmp curl -L 'https://drive.google.com/uc?export=download&id=1ZfRcQThdtAR5PPRjIDtrVP7BtXSCUBbm' \ | grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > dev.txt.tmp curl -L 'https://drive.google.com/uc?export=download&id=1u9mb7kNJHWQCWyweMDRMuTFoOHOfeBTH' \ | grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > test.txt.tmp ``` The GermEval 2014 dataset contains some strange "control character" tokens like `'\x96', '\u200e', '\x95', '\xad' or '\x80'`. One problem with these tokens is, that `BertTokenizer` returns an empty token for them, resulting in misaligned `InputExample`s. The `preprocess.py` script located in the `scripts` folder a) filters these tokens and b) splits longer sentences into smaller ones (once the max. subtoken length is reached). Let's define some variables that we need for further pre-processing steps and training the model: ```bash export MAX_LENGTH=128 export BERT_MODEL=bert-base-multilingual-cased ``` Run the pre-processing script on training, dev and test datasets: ```bash python3 scripts/preprocess.py train.txt.tmp $BERT_MODEL $MAX_LENGTH > train.txt python3 scripts/preprocess.py dev.txt.tmp $BERT_MODEL $MAX_LENGTH > dev.txt python3 scripts/preprocess.py test.txt.tmp $BERT_MODEL $MAX_LENGTH > test.txt ``` The GermEval 2014 dataset has much more labels than CoNLL-2002/2003 datasets, so an own set of labels must be used: ```bash cat train.txt dev.txt test.txt | cut -d " " -f 2 | grep -v "^$"| sort | uniq > labels.txt ``` #### Prepare the run Additional environment variables must be set: ```bash export OUTPUT_DIR=germeval-model export BATCH_SIZE=32 export NUM_EPOCHS=3 export SAVE_STEPS=750 export SEED=1 ``` #### Run the Pytorch version To start training, just run: ```bash python3 run_ner.py --data_dir ./ \ --labels ./labels.txt \ --model_name_or_path $BERT_MODEL \ --output_dir $OUTPUT_DIR \ --max_seq_length $MAX_LENGTH \ --num_train_epochs $NUM_EPOCHS \ --per_device_train_batch_size $BATCH_SIZE \ --save_steps $SAVE_STEPS \ --seed $SEED \ --do_train \ --do_eval \ --do_predict ``` If your GPU supports half-precision training, just add the `--fp16` flag. After training, the model will be both evaluated on development and test datasets. #### JSON-based configuration file Instead of passing all parameters via commandline arguments, the `run_ner.py` script also supports reading parameters from a json-based configuration file: ```json { "data_dir": ".", "labels": "./labels.txt", "model_name_or_path": "bert-base-multilingual-cased", "output_dir": "germeval-model", "max_seq_length": 128, "num_train_epochs": 3, "per_device_train_batch_size": 32, "save_steps": 750, "seed": 1, "do_train": true, "do_eval": true, "do_predict": true } ``` It must be saved with a `.json` extension and can be used by running `python3 run_ner.py config.json`. #### Evaluation Evaluation on development dataset outputs the following for our example: ```bash 10/04/2019 00:42:06 - INFO - __main__ - ***** Eval results ***** 10/04/2019 00:42:06 - INFO - __main__ - f1 = 0.8623348017621146 10/04/2019 00:42:06 - INFO - __main__ - loss = 0.07183869666975543 10/04/2019 00:42:06 - INFO - __main__ - precision = 0.8467916366258111 10/04/2019 00:42:06 - INFO - __main__ - recall = 0.8784592370979806 ``` On the test dataset the following results could be achieved: ```bash 10/04/2019 00:42:42 - INFO - __main__ - ***** Eval results ***** 10/04/2019 00:42:42 - INFO - __main__ - f1 = 0.8614389652384803 10/04/2019 00:42:42 - INFO - __main__ - loss = 0.07064602487454782 10/04/2019 00:42:42 - INFO - __main__ - precision = 0.8604651162790697 10/04/2019 00:42:42 - INFO - __main__ - recall = 0.8624150210424085 ``` ### Emerging and Rare Entities task: WNUT’17 (English NER) dataset Description of the WNUT’17 task from the [shared task website](http://noisy-text.github.io/2017/index.html): > The WNUT’17 shared task focuses on identifying unusual, previously-unseen entities in the context of emerging discussions. > Named entities form the basis of many modern approaches to other tasks (like event clustering and summarization), but recall on > them is a real problem in noisy text - even among annotators. This drop tends to be due to novel entities and surface forms. Six labels are available in the dataset. An overview can be found on this [page](http://noisy-text.github.io/2017/files/). #### Data (Download and pre-processing steps) The dataset can be downloaded from the [official GitHub](https://github.com/leondz/emerging_entities_17) repository. The following commands show how to prepare the dataset for fine-tuning: ```bash mkdir -p data_wnut_17 curl -L 'https://github.com/leondz/emerging_entities_17/raw/master/wnut17train.conll' | tr '\t' ' ' > data_wnut_17/train.txt.tmp curl -L 'https://github.com/leondz/emerging_entities_17/raw/master/emerging.dev.conll' | tr '\t' ' ' > data_wnut_17/dev.txt.tmp curl -L 'https://raw.githubusercontent.com/leondz/emerging_entities_17/master/emerging.test.annotated' | tr '\t' ' ' > data_wnut_17/test.txt.tmp ``` Let's define some variables that we need for further pre-processing steps: ```bash export MAX_LENGTH=128 export BERT_MODEL=bert-large-cased ``` Here we use the English BERT large model for fine-tuning. The `preprocess.py` scripts splits longer sentences into smaller ones (once the max. subtoken length is reached): ```bash python3 scripts/preprocess.py data_wnut_17/train.txt.tmp $BERT_MODEL $MAX_LENGTH > data_wnut_17/train.txt python3 scripts/preprocess.py data_wnut_17/dev.txt.tmp $BERT_MODEL $MAX_LENGTH > data_wnut_17/dev.txt python3 scripts/preprocess.py data_wnut_17/test.txt.tmp $BERT_MODEL $MAX_LENGTH > data_wnut_17/test.txt ``` In the last pre-processing step, the `labels.txt` file needs to be generated. This file contains all available labels: ```bash cat data_wnut_17/train.txt data_wnut_17/dev.txt data_wnut_17/test.txt | cut -d " " -f 2 | grep -v "^$"| sort | uniq > data_wnut_17/labels.txt ``` #### Run the Pytorch version Fine-tuning with the PyTorch version can be started using the `run_ner.py` script. In this example we use a JSON-based configuration file. This configuration file looks like: ```json { "data_dir": "./data_wnut_17", "labels": "./data_wnut_17/labels.txt", "model_name_or_path": "bert-large-cased", "output_dir": "wnut-17-model-1", "max_seq_length": 128, "num_train_epochs": 3, "per_device_train_batch_size": 32, "save_steps": 425, "seed": 1, "do_train": true, "do_eval": true, "do_predict": true, "fp16": false } ``` If your GPU supports half-precision training, please set `fp16` to `true`. Save this JSON-based configuration under `wnut_17.json`. The fine-tuning can be started with `python3 run_ner_old.py wnut_17.json`. #### Evaluation Evaluation on development dataset outputs the following: ```bash 05/29/2020 23:33:44 - INFO - __main__ - ***** Eval results ***** 05/29/2020 23:33:44 - INFO - __main__ - eval_loss = 0.26505235286212275 05/29/2020 23:33:44 - INFO - __main__ - eval_precision = 0.7008264462809918 05/29/2020 23:33:44 - INFO - __main__ - eval_recall = 0.507177033492823 05/29/2020 23:33:44 - INFO - __main__ - eval_f1 = 0.5884802220680084 05/29/2020 23:33:44 - INFO - __main__ - epoch = 3.0 ``` On the test dataset the following results could be achieved: ```bash 05/29/2020 23:33:44 - INFO - transformers.trainer - ***** Running Prediction ***** 05/29/2020 23:34:02 - INFO - __main__ - eval_loss = 0.30948806500973547 05/29/2020 23:34:02 - INFO - __main__ - eval_precision = 0.5840108401084011 05/29/2020 23:34:02 - INFO - __main__ - eval_recall = 0.3994439295644115 05/29/2020 23:34:02 - INFO - __main__ - eval_f1 = 0.47440836543753434 ``` WNUT’17 is a very difficult task. Current state-of-the-art results on this dataset can be found [here](http://nlpprogress.com/english/named_entity_recognition.html).