# coding=utf-8 # Copyright 2010, XXX authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ XXX model configuration """ from __future__ import absolute_import, division, print_function, unicode_literals import json import logging import sys from io import open import six from .configuration_utils import PretrainedConfig logger = logging.getLogger(__name__) XXX_PRETRAINED_CONFIG_ARCHIVE_MAP = { "xxx-base-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/xxx-base-uncased-config.json", "xxx-large-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/xxx-large-uncased-config.json", } class XxxConfig(PretrainedConfig): r""" :class:`~transformers.XxxConfig` is the configuration class to store the configuration of a `XxxModel`. Arguments: vocab_size: Vocabulary size of `inputs_ids` in `XxxModel`. hidden_size: Size of the encoder layers and the pooler layer. num_hidden_layers: Number of hidden layers in the Transformer encoder. num_attention_heads: Number of attention heads for each attention layer in the Transformer encoder. intermediate_size: The size of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act: The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu", "swish" and "gelu_new" are supported. hidden_dropout_prob: The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob: The dropout ratio for the attention probabilities. max_position_embeddings: The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size: The vocabulary size of the `token_type_ids` passed into `XxxModel`. initializer_range: The sttdev of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps: The epsilon used by LayerNorm. """ pretrained_config_archive_map = XXX_PRETRAINED_CONFIG_ARCHIVE_MAP def __init__( self, vocab_size=50257, n_positions=1024, n_ctx=1024, n_embd=768, n_layer=12, n_head=12, resid_pdrop=0.1, embd_pdrop=0.1, attn_pdrop=0.1, layer_norm_epsilon=1e-5, initializer_range=0.02, summary_type="cls_index", summary_use_proj=True, summary_activation=None, summary_proj_to_labels=True, summary_first_dropout=0.1, **kwargs ): super(XxxConfig, self).__init__(**kwargs) self.vocab_size = vocab_size self.n_ctx = n_ctx self.n_positions = n_positions self.n_embd = n_embd self.n_layer = n_layer self.n_head = n_head self.resid_pdrop = resid_pdrop self.embd_pdrop = embd_pdrop self.attn_pdrop = attn_pdrop self.layer_norm_epsilon = layer_norm_epsilon self.initializer_range = initializer_range self.summary_type = summary_type self.summary_use_proj = summary_use_proj self.summary_activation = summary_activation self.summary_first_dropout = summary_first_dropout self.summary_proj_to_labels = summary_proj_to_labels @property def max_position_embeddings(self): return self.n_positions @property def hidden_size(self): return self.n_embd @property def num_attention_heads(self): return self.n_head @property def num_hidden_layers(self): return self.n_layer