# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import subprocess import tempfile import textwrap from transformers import is_torch_available from transformers.integrations.tensor_parallel import get_packed_weights, repack_weights from transformers.testing_utils import ( TestCasePlus, backend_device_count, get_torch_dist_unique_port, require_huggingface_hub_greater_or_equal, require_torch_multi_gpu, torch_device, ) if is_torch_available(): import torch class TestTensorParallelUtils(TestCasePlus): def test_packed_unpacked_conversion(self): WORLD_SIZE = 2 PACKED_BLOCK_SIZE = 800 SHARDING_DIM = 2 NUM_BLOCKS = 2 original_packed_weights = torch.randn(4, 512, 2 * PACKED_BLOCK_SIZE) original_packed_weights.get_dtype = lambda: "F32" # get_packed_weights expects PySlice object empty_param = torch.empty(4, 512, 2 * PACKED_BLOCK_SIZE) class MockDeviceMesh: def size(self): return WORLD_SIZE mock_mesh = ( MockDeviceMesh() ) # get_packed_weights only calls `.size()`, do this to avoid doing actual distributed run packed_weights_0 = get_packed_weights(original_packed_weights, empty_param, mock_mesh, 0, SHARDING_DIM) packed_weights_1 = get_packed_weights(original_packed_weights, empty_param, mock_mesh, 1, SHARDING_DIM) # simulate all gather of sharded weights packed_weights = torch.cat([packed_weights_0, packed_weights_1], dim=SHARDING_DIM) unpacked_weights = repack_weights(packed_weights, SHARDING_DIM, WORLD_SIZE, NUM_BLOCKS) assert torch.allclose(unpacked_weights, original_packed_weights) # RUN_SLOW=1 pytest -sv tests/tensor_parallel/test_tensor_parallel.py class TestTensorParallel(TestCasePlus): nproc_per_node = 2 def torchrun(self, script: str, is_torchrun: bool = True): """Run the `script` using `torchrun` command for multi-processing in a subprocess. Captures errors as necessary.""" with tempfile.NamedTemporaryFile(mode="w+", suffix=".py") as tmp: tmp.write(script) tmp.flush() tmp.seek(0) if is_torchrun: cmd = ( f"torchrun --nproc_per_node {self.nproc_per_node} --master_port {get_torch_dist_unique_port()} {tmp.name}" ).split() else: cmd = ["python3", tmp.name] # Note that the subprocess will be waited for here, and raise an error if not successful try: _ = subprocess.run(cmd, capture_output=True, env=self.get_env(), text=True, check=True) except subprocess.CalledProcessError as e: raise Exception(f"The following error was captured: {e.stderr}") def test_model_forward(self): script_to_run = textwrap.dedent( """ import torch import os from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "JackFram/llama-68m" rank = int(os.environ["RANK"]) world_size = int(os.environ["WORLD_SIZE"]) model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="auto", tp_plan="auto") torch.distributed.barrier() has_dtensor = 0 for name, parameter in model.named_parameters(): if isinstance(parameter.data, torch.distributed.tensor.DTensor): has_dtensor = 1 break assert has_dtensor == 1, "TP model must has DTensor" tokenizer = AutoTokenizer.from_pretrained(model_id) prompt = "Can I help" inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device) outputs = model(inputs) next_token_logits = outputs[0][:, -1, :] next_token = torch.argmax(next_token_logits, dim=-1) response = tokenizer.decode(next_token) assert response == "with" torch.distributed.barrier() torch.distributed.destroy_process_group() """ ) self.torchrun(script_to_run) @require_huggingface_hub_greater_or_equal("0.31.4") def test_model_save(self): from safetensors import safe_open with tempfile.TemporaryDirectory() as tmp_dir: for is_torchrun in [True, False]: script_to_run = textwrap.dedent( f""" import torch import os from transformers import AutoModelForCausalLM model_id = "JackFram/llama-68m" kwargs = dict() if os.environ.get("RANK", None) is not None: kwargs["tp_plan"] = "auto" result_dir = "{tmp_dir}/tp" else: result_dir = "{tmp_dir}/nontp" model = AutoModelForCausalLM.from_pretrained(model_id, **kwargs) model.save_pretrained(result_dir) """ ) self.torchrun(script_to_run, is_torchrun=is_torchrun) non_tp_model_path = os.path.join(tmp_dir, "nontp") tp_model_path = os.path.join(tmp_dir, "tp") for filename in os.listdir(non_tp_model_path): if not filename.endswith(".safetensors"): continue non_tp_model = safe_open(os.path.join(non_tp_model_path, filename), device="cpu", framework="pt") tp_model = safe_open(os.path.join(tp_model_path, filename), device="cpu", framework="pt") for non_tp_key in non_tp_model.keys(): non_tp_tensor = non_tp_model.get_tensor(non_tp_key) tp_tensor = tp_model.get_tensor(non_tp_key) assert torch.allclose(non_tp_tensor, tp_tensor), f"Tensor with key: {non_tp_key} does not match" del non_tp_tensor, tp_tensor @require_torch_multi_gpu class TestTensorParallelCuda(TestTensorParallel): nproc_per_node = backend_device_count(torch_device)