# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch Pixtral model.""" import unittest from transformers import ( PixtralVisionConfig, PixtralVisionModel, is_torch_available, ) from transformers.testing_utils import ( require_torch, torch_device, ) from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch class PixtralVisionModelTester: def __init__( self, parent, batch_size=12, image_size=30, patch_size=2, num_channels=3, is_training=True, hidden_size=32, projection_dim=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, initializer_range=0.02, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.hidden_size = hidden_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.scope = scope # in Pixtral, the seq length equals the number of patches * batch_size because the patches are flattened self.seq_length = (image_size // patch_size) ** 2 * batch_size def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) image_sizes = torch.tensor( [[self.image_size, self.image_size]] * self.batch_size, dtype=torch.long, device=torch_device ) config = self.get_config() return config, pixel_values, image_sizes def get_config(self): return PixtralVisionConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, initializer_range=self.initializer_range, ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, image_sizes = config_and_inputs inputs_dict = {"pixel_values": pixel_values, "image_sizes": image_sizes} return config, inputs_dict @require_torch class PixtralVisionModelModelTest(ModelTesterMixin, unittest.TestCase): """ Model tester for `PixtralVisionModel`. """ all_model_classes = (PixtralVisionModel,) if is_torch_available() else () additional_model_inputs = ["image_sizes"] test_pruning = False test_head_masking = False test_torchscript = False test_resize_embeddings = False def setUp(self): self.model_tester = PixtralVisionModelTester(self) self.config_tester = ConfigTester(self, config_class=PixtralVisionConfig, has_text_modality=False) def test_model_get_set_embeddings(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, torch.nn.Linear))