# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import shutil import tempfile import unittest import pytest from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_vision_available from ...test_processing_common import ProcessorTesterMixin if is_vision_available(): from transformers import ( AutoProcessor, Pix2StructImageProcessor, Pix2StructProcessor, PreTrainedTokenizerFast, T5Tokenizer, ) @require_vision @require_torch class Pix2StructProcessorTest(ProcessorTesterMixin, unittest.TestCase): processor_class = Pix2StructProcessor text_input_name = "decoder_input_ids" images_input_name = "flattened_patches" @classmethod def setUpClass(cls): cls.tmpdirname = tempfile.mkdtemp() image_processor = Pix2StructImageProcessor() tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small") processor = Pix2StructProcessor(image_processor, tokenizer) processor.save_pretrained(cls.tmpdirname) def get_tokenizer(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer def get_image_processor(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor @classmethod def tearDownClass(cls): shutil.rmtree(cls.tmpdirname, ignore_errors=True) def test_save_load_pretrained_additional_features(self): with tempfile.TemporaryDirectory() as tmpdir: processor = Pix2StructProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(tmpdir) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0) processor = Pix2StructProcessor.from_pretrained( tmpdir, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, PreTrainedTokenizerFast) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, Pix2StructImageProcessor) def test_image_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor) image_input = self.prepare_image_inputs() input_feat_extract = image_processor(image_input, return_tensors="np") input_processor = processor(images=image_input, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = self.prepare_text_inputs() encoded_processor = processor(text=input_str) encoded_tok = tokenizer(input_str, return_token_type_ids=False, add_special_tokens=True) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def test_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual( list(inputs.keys()), ["flattened_patches", "attention_mask", "decoder_attention_mask", "decoder_input_ids"] ) # test if it raises when no input is passed with pytest.raises(ValueError): processor() def test_processor_max_patches(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) max_patches = [512, 1024, 2048, 4096] expected_hidden_size = [770, 770, 770, 770] # with text for i, max_patch in enumerate(max_patches): inputs = processor(text=input_str, images=image_input, max_patches=max_patch) self.assertEqual(inputs["flattened_patches"][0].shape[0], max_patch) self.assertEqual(inputs["flattened_patches"][0].shape[1], expected_hidden_size[i]) # without text input for i, max_patch in enumerate(max_patches): inputs = processor(images=image_input, max_patches=max_patch) self.assertEqual(inputs["flattened_patches"][0].shape[0], max_patch) self.assertEqual(inputs["flattened_patches"][0].shape[1], expected_hidden_size[i]) def test_tokenizer_decode(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor) def test_model_input_names(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) # For now the processor supports only ["flattened_patches", "input_ids", "attention_mask", "decoder_attention_mask"] self.assertListEqual( list(inputs.keys()), ["flattened_patches", "attention_mask", "decoder_attention_mask", "decoder_input_ids"] ) inputs = processor(text=input_str) # For now the processor supports only ["flattened_patches", "input_ids", "attention_mask", "decoder_attention_mask"] self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask"]) @require_torch @require_vision def test_image_processor_defaults_preserved_by_image_kwargs(self): # Rewrite as pix2struct processor return "flattened_patches" and not "pixel_values" if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor", max_patches=1024, patch_size={"height": 8, "width": 8}) tokenizer = self.get_component("tokenizer", max_length=117, padding="max_length") processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertEqual(len(inputs["flattened_patches"][0][0]), 194) @require_torch @require_vision def test_kwargs_overrides_default_image_processor_kwargs(self): # Rewrite as pix2struct processor return "flattened_patches" and not "pixel_values" if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor", max_patches=4096) tokenizer = self.get_component("tokenizer", max_length=117, padding="max_length") processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input, max_patches=1024) self.assertEqual(len(inputs["flattened_patches"][0]), 1024) @require_torch @require_vision def test_unstructured_kwargs(self): # Rewrite as pix2struct processor return "decoder_input_ids" and not "input_ids" if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor") tokenizer = self.get_component("tokenizer") processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() inputs = processor( text=input_str, images=image_input, return_tensors="pt", max_patches=1024, padding="max_length", max_length=76, ) self.assertEqual(inputs["flattened_patches"].shape[1], 1024) self.assertEqual(len(inputs["decoder_input_ids"][0]), 76) @require_torch @require_vision def test_unstructured_kwargs_batched(self): # Rewrite as pix2struct processor return "decoder_input_ids" and not "input_ids" if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor") tokenizer = self.get_component("tokenizer") processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs(batch_size=2) image_input = self.prepare_image_inputs(batch_size=2) inputs = processor( text=input_str, images=image_input, return_tensors="pt", max_patches=1024, padding="longest", max_length=76, ) self.assertEqual(inputs["flattened_patches"].shape[1], 1024) self.assertEqual(len(inputs["decoder_input_ids"][0]), 5) @require_torch @require_vision def test_structured_kwargs_nested(self): # Rewrite as pix2struct processor return "decoder_input_ids" and not "input_ids" if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor") tokenizer = self.get_component("tokenizer") processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() # Define the kwargs for each modality all_kwargs = { "common_kwargs": {"return_tensors": "pt"}, "images_kwargs": {"max_patches": 1024}, "text_kwargs": {"padding": "max_length", "max_length": 76}, } inputs = processor(text=input_str, images=image_input, **all_kwargs) self.skip_processor_without_typed_kwargs(processor) self.assertEqual(inputs["flattened_patches"].shape[1], 1024) self.assertEqual(len(inputs["decoder_input_ids"][0]), 76) @require_torch @require_vision def test_structured_kwargs_nested_from_dict(self): # Rewrite as pix2struct processor return "decoder_input_ids" and not "input_ids" if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor") tokenizer = self.get_component("tokenizer") processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() # Define the kwargs for each modality all_kwargs = { "common_kwargs": {"return_tensors": "pt"}, "images_kwargs": {"max_patches": 1024}, "text_kwargs": {"padding": "max_length", "max_length": 76}, } inputs = processor(text=input_str, images=image_input, **all_kwargs) self.assertEqual(inputs["flattened_patches"].shape[1], 1024) self.assertEqual(len(inputs["decoder_input_ids"][0]), 76)