# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import shutil import tempfile import unittest from transformers import AutoProcessor, Llama4Processor, PreTrainedTokenizerFast from transformers.testing_utils import require_vision from transformers.utils import is_vision_available from ...test_processing_common import ProcessorTesterMixin if is_vision_available(): from transformers import Llama4ImageProcessorFast @require_vision class Llama4ProcessorTest(ProcessorTesterMixin, unittest.TestCase): processor_class = Llama4Processor @classmethod def setUpClass(cls): cls.tmpdirname = tempfile.mkdtemp() image_processor = Llama4ImageProcessorFast(max_patches=1, size={"height": 20, "width": 20}) tokenizer = PreTrainedTokenizerFast.from_pretrained("unsloth/Llama-3.2-11B-Vision-Instruct-unsloth-bnb-4bit") processor_kwargs = cls.prepare_processor_dict() processor = Llama4Processor(image_processor, tokenizer, **processor_kwargs) processor.save_pretrained(cls.tmpdirname) cls.image_token = processor.image_token def get_tokenizer(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer def get_image_processor(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor @classmethod def tearDownClass(cls): shutil.rmtree(cls.tmpdirname)