# Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers.image_utils import PILImageResampling from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin if is_vision_available(): from PIL import Image from transformers import Idefics3ImageProcessor if is_torch_available(): import torch class Idefics3ImageProcessingTester: def __init__( self, parent, batch_size=7, num_channels=3, num_images=1, image_size=18, min_resolution=30, max_resolution=40, do_resize=True, size=None, max_image_size=None, do_rescale=True, rescale_factor=1 / 255, do_normalize=True, image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5], do_convert_rgb=True, do_pad=True, do_image_splitting=True, resample=PILImageResampling.LANCZOS, ): self.size = size if size is not None else {"longest_edge": max_resolution} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.num_images = num_images self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.resample = resample self.do_image_splitting = do_image_splitting self.max_image_size = max_image_size if max_image_size is not None else {"longest_edge": 20} self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self.do_convert_rgb = do_convert_rgb self.do_pad = do_pad def prepare_image_processor_dict(self): return { "do_convert_rgb": self.do_convert_rgb, "do_resize": self.do_resize, "size": self.size, "max_image_size": self.max_image_size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, "do_image_splitting": self.do_image_splitting, } def get_expected_values(self, image_inputs, batched=False): """ This function computes the expected height and width when providing images to Idefics3ImageProcessor, assuming do_resize is set to True. The expected size in that case the max image size. """ return self.max_image_size["longest_edge"], self.max_image_size["longest_edge"] def expected_output_image_shape(self, images): height, width = self.get_expected_values(images, batched=True) effective_nb_images = ( self.num_images * 5 if self.do_image_splitting else 1 ) # 5 is a squared image divided into 4 + global image resized return effective_nb_images, self.num_channels, height, width def prepare_image_inputs( self, batch_size=None, min_resolution=None, max_resolution=None, num_channels=None, num_images=None, size_divisor=None, equal_resolution=False, numpify=False, torchify=False, ): """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True, or a list of PyTorch tensors if one specifies torchify=True. One can specify whether the images are of the same resolution or not. """ assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" batch_size = batch_size if batch_size is not None else self.batch_size min_resolution = min_resolution if min_resolution is not None else self.min_resolution max_resolution = max_resolution if max_resolution is not None else self.max_resolution num_channels = num_channels if num_channels is not None else self.num_channels num_images = num_images if num_images is not None else self.num_images images_list = [] for i in range(batch_size): images = [] for j in range(num_images): if equal_resolution: width = height = max_resolution else: # To avoid getting image width/height 0 if size_divisor is not None: # If `size_divisor` is defined, the image needs to have width/size >= `size_divisor` min_resolution = max(size_divisor, min_resolution) width, height = np.random.choice(np.arange(min_resolution, max_resolution), 2) images.append(np.random.randint(255, size=(num_channels, width, height), dtype=np.uint8)) images_list.append(images) if not numpify and not torchify: # PIL expects the channel dimension as last dimension images_list = [[Image.fromarray(np.moveaxis(image, 0, -1)) for image in images] for images in images_list] if torchify: images_list = [[torch.from_numpy(image) for image in images] for images in images_list] if numpify: # Numpy images are typically in channels last format images_list = [[image.transpose(1, 2, 0) for image in images] for images in images_list] return images_list @require_torch @require_vision class Idefics3ImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = Idefics3ImageProcessor if is_vision_available() else None def setUp(self): super().setUp() self.image_processor_tester = Idefics3ImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "do_convert_rgb")) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "resample")) self.assertTrue(hasattr(image_processing, "do_image_splitting")) self.assertTrue(hasattr(image_processing, "max_image_size")) self.assertTrue(hasattr(image_processing, "do_rescale")) self.assertTrue(hasattr(image_processing, "rescale_factor")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_pad")) self.assertTrue(hasattr(image_processing, "do_image_splitting")) def test_call_numpy(self): for image_processing_class in self.image_processor_list: # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True) for sample_images in image_inputs: for image in sample_images: self.assertIsInstance(image, np.ndarray) # Test not batched input encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]]) self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape)) # Test batched encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs) self.assertEqual( tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape) ) def test_call_numpy_4_channels(self): # Idefics3 always processes images as RGB, so it always returns images with 3 channels for image_processing_class in self.image_processor_list: # Initialize image_processing image_processor_dict = self.image_processor_dict image_processing = self.image_processing_class(**image_processor_dict) # create random numpy tensors image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True) for sample_images in image_inputs: for image in sample_images: self.assertIsInstance(image, np.ndarray) # Test not batched input encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]]) self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape)) # Test batched encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs) self.assertEqual( tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape) ) def test_call_pil(self): for image_processing_class in self.image_processor_list: # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PIL images image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False) for images in image_inputs: for image in images: self.assertIsInstance(image, Image.Image) # Test not batched input encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]]) self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape)) # Test batched encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs) self.assertEqual( tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape) ) def test_call_pytorch(self): for image_processing_class in self.image_processor_list: # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True) for images in image_inputs: for image in images: self.assertIsInstance(image, torch.Tensor) # Test not batched input encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]]) self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape)) # Test batched expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs) encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values self.assertEqual( tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape), )