# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch chameleon model.""" import tempfile import unittest from transformers import ChameleonProcessor, LlamaTokenizer from transformers.testing_utils import get_tests_dir from transformers.utils import is_vision_available from ...test_processing_common import ProcessorTesterMixin if is_vision_available(): from transformers import ChameleonImageProcessor SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model") class ChameleonProcessorTest(ProcessorTesterMixin, unittest.TestCase): processor_class = ChameleonProcessor @classmethod def setUpClass(cls): cls.tmpdirname = tempfile.mkdtemp() image_processor = ChameleonImageProcessor() tokenizer = LlamaTokenizer(vocab_file=SAMPLE_VOCAB) tokenizer.pad_token_id = 0 tokenizer.sep_token_id = 1 tokenizer.add_special_tokens({"additional_special_tokens": [""]}) processor = cls.processor_class(image_processor=image_processor, tokenizer=tokenizer, image_seq_length=2) processor.save_pretrained(cls.tmpdirname) cls.image_token = processor.image_token def test_special_mm_token_truncation(self): """Tests that special vision tokens do not get truncated when `truncation=True` is set.""" processor = self.get_processor() input_str = self.prepare_text_inputs(batch_size=2, modality="image") image_input = self.prepare_image_inputs(batch_size=2) _ = processor( text=input_str, images=image_input, return_tensors="pt", truncation=None, padding=True, ) with self.assertRaises(ValueError): _ = processor( text=input_str, images=image_input, return_tensors="pt", truncation=True, padding=True, max_length=20, ) @staticmethod def prepare_processor_dict(): return {"image_seq_length": 2} # fmt: skip