# coding=utf-8 # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from typing import Dict, List, Tuple from parameterized import parameterized from transformers import AutoTokenizer, Mamba2Config, is_torch_available from transformers.testing_utils import require_read_token, require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( Mamba2ForCausalLM, Mamba2Model, ) from transformers.models.mamba2.modeling_mamba2 import Mamba2Cache, Mamba2Mixer from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_0 else: is_torch_greater_or_equal_than_2_0 = False class Mamba2ModelTester: def __init__( self, parent, batch_size=14, num_heads=8, n_groups=8, state_size=2, head_dim=8, conv_kernel=4, chunk_size=8, seq_length=7, is_training=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, hidden_act="silu", hidden_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, num_labels=3, num_choices=4, scope=None, tie_word_embeddings=False, ): self.parent = parent self.num_heads = num_heads self.n_groups = n_groups self.head_dim = head_dim self.state_size = state_size self.conv_kernel = conv_kernel self.chunk_size = chunk_size self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.num_labels = num_labels self.num_choices = num_choices self.scope = scope self.bos_token_id = vocab_size - 1 self.eos_token_id = vocab_size - 1 self.pad_token_id = vocab_size - 1 self.tie_word_embeddings = tie_word_embeddings def get_large_model_config(self): return Mamba2Config.from_pretrained("mistralai/Mamba-Codestral-7B-v0.1") def prepare_config_and_inputs( self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False ): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config( gradient_checkpointing=gradient_checkpointing, ) return ( config, input_ids, None, sequence_labels, token_labels, choice_labels, ) def get_config(self, gradient_checkpointing=False): return Mamba2Config( head_dim=self.head_dim, num_heads=self.num_heads, n_groups=self.n_groups, state_size=self.state_size, conv_kernel=self.conv_kernel, chunk_size=self.chunk_size, vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, activation_function=self.hidden_act, n_positions=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, use_cache=True, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, gradient_checkpointing=gradient_checkpointing, tie_word_embeddings=self.tie_word_embeddings, ) def prepare_config_and_inputs_for_common(self): ( config, input_ids, _, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() inputs_dict = {"input_ids": input_ids} return config, inputs_dict @unittest.skipIf( not is_torch_greater_or_equal_than_2_0, reason="See https://github.com/huggingface/transformers/pull/24204" ) @require_torch class Mamba2ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (Mamba2Model, Mamba2ForCausalLM) if is_torch_available() else () all_generative_model_classes = (Mamba2ForCausalLM,) if is_torch_available() else () has_attentions = False # Mamba does not support attentions fx_compatible = False # FIXME let's try to support this @molbap test_torchscript = False # FIXME I think this should be doable @molbap @ArthurZucker test_missing_keys = False test_model_parallel = False test_pruning = False test_head_masking = False # Mamba does not have attention heads pipeline_model_mapping = ( {"feature-extraction": Mamba2Model, "text-generation": Mamba2ForCausalLM} if is_torch_available() else {} ) def setUp(self): self.model_tester = Mamba2ModelTester(self) self.config_tester = ConfigTester( self, config_class=Mamba2Config, n_embd=37, common_properties=["hidden_size", "num_hidden_layers"] ) def test_initialization(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config=config) for name, param in model.named_parameters(): if "D" in name: if param.requires_grad: # check if it's a ones like self.assertTrue(torch.allclose(param.data, torch.ones_like(param.data), atol=1e-5, rtol=1e-5)) @unittest.skip(reason="Mamba 2 weights are not tied") def test_tied_weights_keys(self): pass @unittest.skip(reason="To fix, Mamba 2 cache slicing test case is an edge case") def test_generate_without_input_ids(self): pass @unittest.skip(reason="To fix, Mamba 2 cache slicing test case is an edge case") def test_generate_from_inputs_embeds_decoder_only(self): pass @unittest.skip(reason="To fix, Mamba 2 cache slicing test case is an edge case") def test_greedy_generate_dict_outputs_use_cache(self): pass @unittest.skip(reason="To fix, Mamba 2 cache slicing is interacting with beam search") def test_beam_search_generate_dict_outputs_use_cache(self): pass @unittest.skip(reason="A large mamba2 would be necessary (and costly) for that") def test_multi_gpu_data_parallel_forward(self): pass def test_model_outputs_equivalence(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): with torch.no_grad(): tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs) dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple() def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, Mamba2Cache): # MODIFIED PART START recursive_check(tuple_object.conv_states, dict_object.conv_states) recursive_check(tuple_object.ssm_states, dict_object.ssm_states) elif isinstance(tuple_object, (List, Tuple)): # MODIFIED PART END for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): recursive_check(tuple_iterable_value, dict_iterable_value) elif isinstance(tuple_object, Dict): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values(), dict_object.values() ): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assertTrue( torch.allclose(tuple_object, dict_object, atol=1e-5), msg=( "Tuple and dict output are not equal. Difference:" f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." ), ) recursive_check(tuple_output, dict_output) for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) @unittest.skip( reason="Mamba2 does not support generating with input embeddings (custom cache_position computation)" ) def test_inputs_embeds_matches_input_ids_with_generate(self): pass @require_torch @slow @require_read_token class Mamba2IntegrationTest(unittest.TestCase): def setUp(self): self.model_id = "mistralai/Mamba-Codestral-7B-v0.1" self.tokenizer = AutoTokenizer.from_pretrained(self.model_id, from_slow=True, legacy=False) self.prompt = ("[INST]Write a hello world program in C++.",) @require_read_token @parameterized.expand( [ (torch_device,), ] ) @slow @require_torch def test_simple_generate(self, device): """ Simple generate test to avoid regressions. Note: state-spaces (cuda) implementation and pure torch implementation have irreconciliable differences as of now, which will cause this test to fail in an environment with state-spaces installed. """ tokenizer = self.tokenizer tokenizer.pad_token_id = tokenizer.eos_token_id model = Mamba2ForCausalLM.from_pretrained(self.model_id, torch_dtype=torch.bfloat16) model.to(device) input_ids = tokenizer("[INST]Write a hello world program in C++.[/INST]", return_tensors="pt")["input_ids"].to( device ) out = model.generate(input_ids, do_sample=False, use_cache=True, max_new_tokens=30) output_sentence = tokenizer.decode(out[0]) ground_truth_sentence = """[INST]Write a hello world program in C++.[/INST] Sure, here is a simple "Hello, World!" program in C++:\n\n```cpp\n#include \n\n""" self.assertEqual(output_sentence, ground_truth_sentence) @require_read_token @slow @require_torch_gpu def test_batched_equivalence_with_cache(self): """ Verifies that batched generation matches individual generation. Important because of the specific caching mechanism + statefulness of mamba model. Depending on precision and devices, differences can be observed from generation to generation. """ tokenizer = self.tokenizer prompt = [ "[INST]Write C#.[/INST]", "[INST]Write a hello world in C++.[/INST]", "[INST] Write a simple Fibonacci number computation function in Rust that does memoization, with comments, in safe Rust.[/INST]", ] model = Mamba2ForCausalLM.from_pretrained(self.model_id, torch_dtype=torch.bfloat16).to(torch_device) tokenizer.pad_token_id = tokenizer.eos_token_id # batched generation tokenized_prompts = tokenizer(prompt, return_tensors="pt", padding="longest").to(torch_device) batched_gen = model.generate(**tokenized_prompts, max_new_tokens=30, use_cache=True) batched_output = tokenizer.batch_decode(batched_gen, skip_special_tokens=True) # individual generation for index_gen, individual_prompt in enumerate(prompt): inputs = tokenizer(individual_prompt, return_tensors="pt", padding="longest").to(torch_device) individual_gen = model.generate(**inputs, max_new_tokens=30, use_cache=True) individual_output = tokenizer.batch_decode(individual_gen, skip_special_tokens=True)[0] self.assertEqual(individual_output[:100], batched_output[index_gen][:100]) @require_read_token @slow @require_torch_gpu def test_batched_equivalence_without_cache(self): """ Verifies that batched generation matches individual generation without cache. Important because of the specific caching mechanism + statefulness of mamba model. Depending on precision and devices, differences can be observed from generation to generation. """ tokenizer = self.tokenizer prompt = [ "[INST]Write C#.[/INST]", "[INST]Write a hello world in C++.[/INST]", "[INST] Write a simple Fibonacci number computation function in Rust that does memoization, with comments, in safe Rust.[/INST]", ] model = Mamba2ForCausalLM.from_pretrained(self.model_id, torch_dtype=torch.bfloat16).to(torch_device) tokenizer.pad_token_id = tokenizer.eos_token_id # batched generation tokenized_prompts = tokenizer(prompt, return_tensors="pt", padding="longest").to(torch_device) batched_gen = model.generate(**tokenized_prompts, max_new_tokens=30, use_cache=True) batched_output = tokenizer.batch_decode(batched_gen, skip_special_tokens=True) # individual generation for index_gen, individual_prompt in enumerate(prompt): inputs = tokenizer(individual_prompt, return_tensors="pt", padding="longest").to(torch_device) individual_gen = model.generate(**inputs, max_new_tokens=30, use_cache=True) individual_output = tokenizer.batch_decode(individual_gen, skip_special_tokens=True)[0] self.assertEqual(individual_output[:100], batched_output[index_gen][:100]) @slow @require_torch_gpu def test_mamba2_mixer_train_vs_eval_equivalence(self): # Based on https://github.com/sustcsonglin/flash-linear-attention/issues/63 # Credit to zhixuan-lin B, T, D = 4, 512, 768 dtype = torch.bfloat16 config = Mamba2Config(num_heads=24, head_dim=64, hidden_size=768, expand=2, n_groups=1) torch.manual_seed(42) with torch.amp.autocast(device_type="cuda", dtype=dtype): with torch.no_grad(): mixer = Mamba2Mixer(config, layer_idx=0).to("cuda") hidden_states = torch.rand(size=(B, T, D), dtype=dtype, device="cuda") mixer.train() out_train = mixer(hidden_states) mixer.eval() out_eval = mixer(hidden_states) self.assertTrue(torch.allclose(out_train, out_eval, atol=1e-3))