# FLAN-UL2 ## Overview Flan-UL2 is an encoder decoder model based on the T5 architecture. It uses the same configuration as the [UL2](ul2) model released earlier last year. It was fine tuned using the "Flan" prompt tuning and dataset collection. Similiar to `Flan-T5`, one can directly use FLAN-UL2 weights without finetuning the model: According ot the original blog here are the notable improvements: - The original UL2 model was only trained with receptive field of 512, which made it non-ideal for N-shot prompting where N is large. - The Flan-UL2 checkpoint uses a receptive field of 2048 which makes it more usable for few-shot in-context learning. - The original UL2 model also had mode switch tokens that was rather mandatory to get good performance. However, they were a little cumbersome as this requires often some changes during inference or finetuning. In this update/change, we continue training UL2 20B for an additional 100k steps (with small batch) to forget “mode tokens” before applying Flan instruction tuning. This Flan-UL2 checkpoint does not require mode tokens anymore. Google has released the following variants: One can refer to [T5's documentation page](t5) for all tips, code examples and notebooks. As well as the FLAN-T5 model card for more details regarding training and evaluation of the model. The original checkpoints can be found [here](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints). ## Running on low resource devices The model is pretty heavy (~40GB in half precision) so if you just want to run the model, make sure you load your model in 8bit, and use `device_map="auto"` to make sure you don't have any OOM issue! ```python >>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer >>> model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-ul2", load_in_8bit=True, device_map="auto") >>> tokenizer = AutoTokenizer.from_pretrained("google/flan-ul2") >>> inputs = tokenizer("A step by step recipe to make bolognese pasta:", return_tensors="pt") >>> outputs = model.generate(**inputs) >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) ['In a large skillet, brown the ground beef and onion over medium heat. Add the garlic'] ``` ## Inference The inference protocol is exaclty the same as any `T5` model, please have a look at the [T5's documentation page](t5) for more details.