# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers import ( MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING, AutoProcessor, TextToAudioPipeline, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, require_torch, require_torch_accelerator, require_torch_or_tf, slow, torch_device, ) from transformers.trainer_utils import set_seed from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class TextToAudioPipelineTests(unittest.TestCase): model_mapping = MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING # for now only test text_to_waveform and not text_to_spectrogram @require_torch def test_small_musicgen_pt(self): music_generator = pipeline( task="text-to-audio", model="facebook/musicgen-small", framework="pt", do_sample=False, max_new_tokens=5 ) outputs = music_generator("This is a test") self.assertEqual({"audio": ANY(np.ndarray), "sampling_rate": 32000}, outputs) # test two examples side-by-side outputs = music_generator(["This is a test", "This is a second test"]) audio = [output["audio"] for output in outputs] self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio) # test batching, this time with parameterization in the forward pass music_generator = pipeline(task="text-to-audio", model="facebook/musicgen-small", framework="pt") forward_params = {"do_sample": False, "max_new_tokens": 5} outputs = music_generator( ["This is a test", "This is a second test"], forward_params=forward_params, batch_size=2 ) audio = [output["audio"] for output in outputs] self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio) @slow @require_torch def test_medium_seamless_m4t_pt(self): speech_generator = pipeline( task="text-to-audio", model="facebook/hf-seamless-m4t-medium", framework="pt", max_new_tokens=5 ) for forward_params in [{"tgt_lang": "eng"}, {"return_intermediate_token_ids": True, "tgt_lang": "eng"}]: outputs = speech_generator("This is a test", forward_params=forward_params) self.assertEqual({"audio": ANY(np.ndarray), "sampling_rate": 16000}, outputs) # test two examples side-by-side outputs = speech_generator(["This is a test", "This is a second test"], forward_params=forward_params) audio = [output["audio"] for output in outputs] self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio) # test batching outputs = speech_generator( ["This is a test", "This is a second test"], forward_params=forward_params, batch_size=2 ) audio = [output["audio"] for output in outputs] self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio) @slow @require_torch def test_small_bark_pt(self): speech_generator = pipeline(task="text-to-audio", model="suno/bark-small", framework="pt") forward_params = { # Using `do_sample=False` to force deterministic output "do_sample": False, "semantic_max_new_tokens": 5, } outputs = speech_generator("This is a test", forward_params=forward_params) self.assertEqual( {"audio": ANY(np.ndarray), "sampling_rate": 24000}, outputs, ) # test two examples side-by-side outputs = speech_generator( ["This is a test", "This is a second test"], forward_params=forward_params, ) audio = [output["audio"] for output in outputs] self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio) # test other generation strategy forward_params = { "do_sample": True, "semantic_max_new_tokens": 5, "semantic_num_return_sequences": 2, } outputs = speech_generator("This is a test", forward_params=forward_params) audio = outputs["audio"] self.assertEqual(ANY(np.ndarray), audio) # test using a speaker embedding processor = AutoProcessor.from_pretrained("suno/bark-small") temp_inp = processor("hey, how are you?", voice_preset="v2/en_speaker_5") history_prompt = temp_inp["history_prompt"] forward_params["history_prompt"] = history_prompt outputs = speech_generator( ["This is a test", "This is a second test"], forward_params=forward_params, batch_size=2, ) audio = [output["audio"] for output in outputs] self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio) @slow @require_torch_accelerator def test_conversion_additional_tensor(self): speech_generator = pipeline(task="text-to-audio", model="suno/bark-small", framework="pt", device=torch_device) processor = AutoProcessor.from_pretrained("suno/bark-small") forward_params = { "do_sample": True, "semantic_max_new_tokens": 5, } # atm, must do to stay coherent with BarkProcessor preprocess_params = { "max_length": 256, "add_special_tokens": False, "return_attention_mask": True, "return_token_type_ids": False, "padding": "max_length", } outputs = speech_generator( "This is a test", forward_params=forward_params, preprocess_params=preprocess_params, ) temp_inp = processor("hey, how are you?", voice_preset="v2/en_speaker_5") history_prompt = temp_inp["history_prompt"] forward_params["history_prompt"] = history_prompt # history_prompt is a torch.Tensor passed as a forward_param # if generation is successful, it means that it was passed to the right device outputs = speech_generator( "This is a test", forward_params=forward_params, preprocess_params=preprocess_params ) self.assertEqual( {"audio": ANY(np.ndarray), "sampling_rate": 24000}, outputs, ) @require_torch def test_vits_model_pt(self): speech_generator = pipeline(task="text-to-audio", model="facebook/mms-tts-eng", framework="pt") outputs = speech_generator("This is a test") self.assertEqual(outputs["sampling_rate"], 16000) audio = outputs["audio"] self.assertEqual(ANY(np.ndarray), audio) # test two examples side-by-side outputs = speech_generator(["This is a test", "This is a second test"]) audio = [output["audio"] for output in outputs] self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio) # test batching outputs = speech_generator(["This is a test", "This is a second test"], batch_size=2) self.assertEqual(ANY(np.ndarray), outputs[0]["audio"]) @require_torch def test_forward_model_kwargs(self): # use vits - a forward model speech_generator = pipeline(task="text-to-audio", model="kakao-enterprise/vits-vctk", framework="pt") # for reproducibility set_seed(555) outputs = speech_generator("This is a test", forward_params={"speaker_id": 5}) audio = outputs["audio"] with self.assertRaises(TypeError): # assert error if generate parameter outputs = speech_generator("This is a test", forward_params={"speaker_id": 5, "do_sample": True}) forward_params = {"speaker_id": 5} generate_kwargs = {"do_sample": True} with self.assertRaises(ValueError): # assert error if generate_kwargs with forward-only models outputs = speech_generator( "This is a test", forward_params=forward_params, generate_kwargs=generate_kwargs ) self.assertTrue(np.abs(outputs["audio"] - audio).max() < 1e-5) @require_torch def test_generative_model_kwargs(self): # use musicgen - a generative model music_generator = pipeline(task="text-to-audio", model="facebook/musicgen-small", framework="pt") forward_params = { "do_sample": True, "max_new_tokens": 20, } # for reproducibility set_seed(555) outputs = music_generator("This is a test", forward_params=forward_params) audio = outputs["audio"] self.assertEqual(ANY(np.ndarray), audio) # make sure generate kwargs get priority over forward params forward_params = { "do_sample": False, "max_new_tokens": 20, } generate_kwargs = {"do_sample": True} # for reproducibility set_seed(555) outputs = music_generator("This is a test", forward_params=forward_params, generate_kwargs=generate_kwargs) self.assertListEqual(outputs["audio"].tolist(), audio.tolist()) def get_test_pipeline( self, model, tokenizer=None, image_processor=None, feature_extractor=None, processor=None, torch_dtype="float32", ): model_test_kwargs = {} if model.can_generate(): # not all models in this pipeline can generate and, therefore, take `generate` kwargs model_test_kwargs["max_new_tokens"] = 5 model.config._attn_implementation = "eager" speech_generator = TextToAudioPipeline( model=model, tokenizer=tokenizer, feature_extractor=feature_extractor, image_processor=image_processor, processor=processor, torch_dtype=torch_dtype, **model_test_kwargs, ) return speech_generator, ["This is a test", "Another test"] def run_pipeline_test(self, speech_generator, _): outputs = speech_generator("This is a test") self.assertEqual(ANY(np.ndarray), outputs["audio"]) forward_params = ( {"num_return_sequences": 2, "do_sample": True} if speech_generator.model.can_generate() else {} ) outputs = speech_generator(["This is great !", "Something else"], forward_params=forward_params) audio = [output["audio"] for output in outputs] self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio)