import logging import sys import tempfile import unittest from pathlib import Path from unittest.mock import patch from torch.utils.data import DataLoader from transformers import BartTokenizer from .evaluate_cnn import run_generate from .utils import SummarizationDataset logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() def _dump_articles(path: Path, articles: list): with path.open("w") as f: f.write("\n".join(articles)) class TestBartExamples(unittest.TestCase): def test_bart_cnn_cli(self): stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) tmp = Path(tempfile.gettempdir()) / "utest_generations_bart_sum.hypo" output_file_name = Path(tempfile.gettempdir()) / "utest_output_bart_sum.hypo" articles = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."] _dump_articles(tmp, articles) testargs = ["evaluate_cnn.py", str(tmp), str(output_file_name), "sshleifer/bart-tiny-random"] with patch.object(sys, "argv", testargs): run_generate() self.assertTrue(output_file_name.exists()) def test_bart_summarization_dataset(self): tmp_dir = Path(tempfile.gettempdir()) articles = [" Sam ate lunch today", "Sams lunch ingredients"] summaries = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"] _dump_articles((tmp_dir / "train.source"), articles) _dump_articles((tmp_dir / "train.target"), summaries) tokenizer = BartTokenizer.from_pretrained("bart-large") max_len_source = max(len(tokenizer.encode(a)) for a in articles) max_len_target = max(len(tokenizer.encode(a)) for a in summaries) trunc_target = 4 train_dataset = SummarizationDataset( tokenizer, data_dir=tmp_dir, type_path="train", max_source_length=20, max_target_length=trunc_target, ) dataloader = DataLoader(train_dataset, batch_size=2, collate_fn=train_dataset.collate_fn) for batch in dataloader: self.assertEqual(batch["source_mask"].shape, batch["source_ids"].shape) # show that articles were trimmed. self.assertEqual(batch["source_ids"].shape[1], max_len_source) self.assertGreater(20, batch["source_ids"].shape[1]) # trimmed significantly # show that targets were truncated self.assertEqual(batch["target_ids"].shape[1], trunc_target) # Truncated self.assertGreater(max_len_target, trunc_target) # Truncated