# Wav2Vec2 ## Overview The Wav2Vec2 model was proposed in [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli. The abstract from the paper is the following: *We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data.* Tips: - Wav2Vec2 is a speech model that accepts a float array corresponding to the raw waveform of the speech signal. - Wav2Vec2 model was trained using connectionist temporal classification (CTC) so the model output has to be decoded using [`Wav2Vec2CTCTokenizer`]. This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten). ## Wav2Vec2Config [[autodoc]] Wav2Vec2Config ## Wav2Vec2CTCTokenizer [[autodoc]] Wav2Vec2CTCTokenizer - __call__ - save_vocabulary - decode - batch_decode ## Wav2Vec2FeatureExtractor [[autodoc]] Wav2Vec2FeatureExtractor - __call__ ## Wav2Vec2Processor [[autodoc]] Wav2Vec2Processor - __call__ - pad - from_pretrained - save_pretrained - batch_decode - decode - as_target_processor ## Wav2Vec2ProcessorWithLM [[autodoc]] Wav2Vec2ProcessorWithLM - __call__ - pad - from_pretrained - save_pretrained - batch_decode - decode - as_target_processor ## Wav2Vec2 specific outputs [[autodoc]] models.wav2vec2_with_lm.processing_wav2vec2_with_lm.Wav2Vec2DecoderWithLMOutput [[autodoc]] models.wav2vec2.modeling_wav2vec2.Wav2Vec2BaseModelOutput [[autodoc]] models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTrainingOutput [[autodoc]] models.wav2vec2.modeling_flax_wav2vec2.FlaxWav2Vec2BaseModelOutput [[autodoc]] models.wav2vec2.modeling_flax_wav2vec2.FlaxWav2Vec2ForPreTrainingOutput ## Wav2Vec2Model [[autodoc]] Wav2Vec2Model - forward ## Wav2Vec2ForCTC [[autodoc]] Wav2Vec2ForCTC - forward ## Wav2Vec2ForSequenceClassification [[autodoc]] Wav2Vec2ForSequenceClassification - forward ## Wav2Vec2ForAudioFrameClassification [[autodoc]] Wav2Vec2ForAudioFrameClassification - forward ## Wav2Vec2ForXVector [[autodoc]] Wav2Vec2ForXVector - forward ## Wav2Vec2ForPreTraining [[autodoc]] Wav2Vec2ForPreTraining - forward ## TFWav2Vec2Model [[autodoc]] TFWav2Vec2Model - call ## TFWav2Vec2ForCTC [[autodoc]] TFWav2Vec2ForCTC - call ## FlaxWav2Vec2Model [[autodoc]] FlaxWav2Vec2Model - __call__ ## FlaxWav2Vec2ForCTC [[autodoc]] FlaxWav2Vec2ForCTC - __call__ ## FlaxWav2Vec2ForPreTraining [[autodoc]] FlaxWav2Vec2ForPreTraining - __call__