# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM @require_tf @require_sentencepiece @require_tokenizers class TFMT5ModelIntegrationTest(unittest.TestCase): @slow def test_small_integration_test(self): """ For comparison run: >>> import t5 # pip install t5==0.7.1 >>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary >>> path_to_mtf_small_mt5_checkpoint = '' >>> path_to_mtf_small_mt5_spm_model_path = '' >>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_mt5_checkpoint, batch_size=1, tpu=None) >>> vocab = SentencePieceVocabulary(path_to_mtf_small_mt5_spm_model_path, extra_ids=100) >>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab) """ model = TFAutoModelForSeq2SeqLM.from_pretrained("google/mt5-small") tokenizer = AutoTokenizer.from_pretrained("google/mt5-small") input_ids = tokenizer("Hello there", return_tensors="tf").input_ids labels = tokenizer("Hi I am", return_tensors="tf").input_ids loss = model(input_ids, labels=labels).loss mtf_score = -tf.math.reduce_mean(loss).numpy() EXPECTED_SCORE = -21.228168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 2e-4)