# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import AutoFeatureExtractor, AutoTokenizer, Speech2TextForConditionalGeneration, Wav2Vec2ForCTC from transformers.pipelines import AutomaticSpeechRecognitionPipeline from transformers.testing_utils import require_datasets, require_torch, require_torchaudio, slow # from .test_pipelines_common import CustomInputPipelineCommonMixin class AutomaticSpeechRecognitionPipelineTests(unittest.TestCase): # pipeline_task = "automatic-speech-recognition" # small_models = ["facebook/s2t-small-mustc-en-fr-st"] # Models tested without the @slow decorator # large_models = [ # "facebook/wav2vec2-base-960h", # "facebook/s2t-small-mustc-en-fr-st", # ] # Models tested with the @slow decorator @slow @require_torch @require_datasets def test_simple_wav2vec2(self): import numpy as np from datasets import load_dataset model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h") tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h") feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h") asr = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor) waveform = np.zeros((34000,)) output = asr(waveform) self.assertEqual(output, {"text": ""}) ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") filename = ds[0]["file"] output = asr(filename) self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"}) filename = ds[0]["file"] with open(filename, "rb") as f: data = f.read() output = asr(data) self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"}) @slow @require_torch @require_torchaudio @require_datasets def test_simple_s2t(self): import numpy as np from datasets import load_dataset model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-mustc-en-it-st") tokenizer = AutoTokenizer.from_pretrained("facebook/s2t-small-mustc-en-it-st") feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/s2t-small-mustc-en-it-st") asr = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor) waveform = np.zeros((34000,)) output = asr(waveform) self.assertEqual(output, {"text": "E questo รจ il motivo per cui non ci siamo mai incontrati."}) ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") filename = ds[0]["file"] output = asr(filename) self.assertEqual(output, {"text": "Un uomo disse all'universo: \"Signore, io esisto."}) filename = ds[0]["file"] with open(filename, "rb") as f: data = f.read() output = asr(data) self.assertEqual(output, {"text": "Un uomo disse all'universo: \"Signore, io esisto."})