# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import shutil import tempfile import unittest from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_vision_available from ...test_processing_common import ProcessorTesterMixin if is_vision_available(): from transformers import ( AutoProcessor, LlavaOnevisionImageProcessor, LlavaOnevisionProcessor, LlavaOnevisionVideoProcessor, Qwen2TokenizerFast, ) @require_vision class LlavaOnevisionProcessorTest(ProcessorTesterMixin, unittest.TestCase): processor_class = LlavaOnevisionProcessor def setUp(self): self.tmpdirname = tempfile.mkdtemp() image_processor = LlavaOnevisionImageProcessor() video_processor = LlavaOnevisionVideoProcessor() tokenizer = Qwen2TokenizerFast.from_pretrained("Qwen/Qwen2-0.5B-Instruct") processor_kwargs = self.prepare_processor_dict() processor = LlavaOnevisionProcessor( video_processor=video_processor, image_processor=image_processor, tokenizer=tokenizer, **processor_kwargs ) processor.save_pretrained(self.tmpdirname) def get_tokenizer(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer def get_image_processor(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor def get_video_processor(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).video_processor def prepare_processor_dict(self): return {"chat_template": "dummy_template"} @unittest.skip( "Skip because the model has no processor kwargs except for chat template and" "chat template is saved as a separate file. Stop skipping this test when the processor" "has new kwargs saved in config file." ) def test_processor_to_json_string(self): pass # Copied from tests.models.llava.test_processor_llava.LlavaProcessorTest.test_chat_template_is_saved def test_chat_template_is_saved(self): processor_loaded = self.processor_class.from_pretrained(self.tmpdirname) processor_dict_loaded = json.loads(processor_loaded.to_json_string()) # chat templates aren't serialized to json in processors self.assertFalse("chat_template" in processor_dict_loaded.keys()) # they have to be saved as separate file and loaded back from that file # so we check if the same template is loaded processor_dict = self.prepare_processor_dict() self.assertTrue(processor_loaded.chat_template == processor_dict.get("chat_template", None)) def tearDown(self): shutil.rmtree(self.tmpdirname) def test_chat_template(self): processor = AutoProcessor.from_pretrained("llava-hf/llava-onevision-qwen2-7b-ov-hf") expected_prompt = "<|im_start|>user \nWhat is shown in this image?<|im_end|><|im_start|>assistant\n" messages = [ { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "What is shown in this image?"}, ], }, ] formatted_prompt = processor.apply_chat_template(messages, add_generation_prompt=True) self.assertEqual(expected_prompt, formatted_prompt) @require_torch @require_vision def test_image_processor_defaults_preserved_by_image_kwargs(self): # Rewrite as llava-next image processor return pixel values with an added dimesion for image patches if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor", size=(234, 234)) video_processor = self.get_component("video_processor", size=(234, 234)) tokenizer = self.get_component("tokenizer", max_length=117) processor = self.processor_class( tokenizer=tokenizer, image_processor=image_processor, video_processor=video_processor ) self.skip_processor_without_typed_kwargs(processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) # added dimension for image patches self.assertEqual(len(inputs["pixel_values"][0][0][0]), 234) @require_torch @require_vision def test_kwargs_overrides_default_image_processor_kwargs(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor", crop_size=(234, 234)) video_processor = self.get_component("video_processor", size=(234, 234)) tokenizer = self.get_component("tokenizer", max_length=117) processor = self.processor_class( tokenizer=tokenizer, image_processor=image_processor, video_processor=video_processor ) self.skip_processor_without_typed_kwargs(processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input, size=[224, 224]) # added dimension for image patches self.assertEqual(len(inputs["pixel_values"][0][0][0]), 224) @require_torch @require_vision def test_unstructured_kwargs(self): image_processor = self.get_component("image_processor") video_processor = self.get_component("video_processor") tokenizer = self.get_component("tokenizer") processor = self.processor_class( tokenizer=tokenizer, image_processor=image_processor, video_processor=video_processor ) self.skip_processor_without_typed_kwargs(processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor( text=input_str, images=image_input, return_tensors="pt", size={"height": 214, "width": 214}, padding="max_length", max_length=76, ) # added dimension for image patches self.assertEqual(inputs["pixel_values"].shape[3], 214) self.assertEqual(len(inputs["input_ids"][0]), 76) @require_torch @require_vision def test_unstructured_kwargs_batched(self): image_processor = self.get_component("image_processor") video_processor = self.get_component("video_processor") tokenizer = self.get_component("tokenizer") processor = self.processor_class( tokenizer=tokenizer, image_processor=image_processor, video_processor=video_processor ) self.skip_processor_without_typed_kwargs(processor) input_str = ["lower newer", "upper older longer string"] image_input = self.prepare_image_inputs() * 2 inputs = processor( text=input_str, images=image_input, return_tensors="pt", size={"height": 214, "width": 214}, padding="longest", max_length=76, ) self.assertEqual(inputs["pixel_values"].shape[3], 214) self.assertEqual(len(inputs["input_ids"][0]), 5) @require_torch @require_vision def test_structured_kwargs_nested(self): image_processor = self.get_component("image_processor") video_processor = self.get_component("video_processor") tokenizer = self.get_component("tokenizer") processor = self.processor_class( tokenizer=tokenizer, image_processor=image_processor, video_processor=video_processor ) self.skip_processor_without_typed_kwargs(processor) input_str = "lower newer" image_input = self.prepare_image_inputs() # Define the kwargs for each modality all_kwargs = { "common_kwargs": {"return_tensors": "pt"}, "images_kwargs": {"size": {"height": 214, "width": 214}}, "text_kwargs": {"padding": "max_length", "max_length": 76}, } inputs = processor(text=input_str, images=image_input, **all_kwargs) self.skip_processor_without_typed_kwargs(processor) self.assertEqual(inputs["pixel_values"].shape[3], 214) self.assertEqual(len(inputs["input_ids"][0]), 76) @require_torch @require_vision def test_structured_kwargs_nested_from_dict(self): image_processor = self.get_component("image_processor") video_processor = self.get_component("video_processor") tokenizer = self.get_component("tokenizer") processor = self.processor_class( tokenizer=tokenizer, image_processor=image_processor, video_processor=video_processor ) self.skip_processor_without_typed_kwargs(processor) input_str = "lower newer" image_input = self.prepare_image_inputs() # Define the kwargs for each modality all_kwargs = { "common_kwargs": {"return_tensors": "pt"}, "images_kwargs": {"size": {"height": 214, "width": 214}}, "text_kwargs": {"padding": "max_length", "max_length": 76}, } inputs = processor(text=input_str, images=image_input, **all_kwargs) self.assertEqual(inputs["pixel_values"].shape[3], 214) self.assertEqual(len(inputs["input_ids"][0]), 76) @require_torch @require_vision def test_doubly_passed_kwargs(self): image_processor = self.get_component("image_processor") video_processor = self.get_component("video_processor") tokenizer = self.get_component("tokenizer") processor = self.processor_class( tokenizer=tokenizer, image_processor=image_processor, video_processor=video_processor ) self.skip_processor_without_typed_kwargs(processor) input_str = ["lower newer"] image_input = self.prepare_image_inputs() with self.assertRaises(ValueError): _ = processor( text=input_str, images=image_input, images_kwargs={"size": {"height": 222, "width": 222}}, size={"height": 214, "width": 214}, ) @require_vision @require_torch def test_kwargs_overrides_default_tokenizer_kwargs(self): image_processor = self.get_component("image_processor") video_processor = self.get_component("video_processor") tokenizer = self.get_component("tokenizer", max_length=117) processor = self.processor_class( tokenizer=tokenizer, image_processor=image_processor, video_processor=video_processor ) self.skip_processor_without_typed_kwargs(processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input, return_tensors="pt", max_length=112) self.assertEqual(len(inputs["input_ids"][0]), 112) @require_vision @require_torch def test_tokenizer_defaults_preserved_by_kwargs(self): image_processor = self.get_component("image_processor") video_processor = self.get_component("video_processor") tokenizer = self.get_component("tokenizer", max_length=117) processor = self.processor_class( tokenizer=tokenizer, image_processor=image_processor, video_processor=video_processor ) self.skip_processor_without_typed_kwargs(processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input, return_tensors="pt") self.assertEqual(len(inputs["input_ids"][0]), 117)