# coding=utf-8 # Copyright 2021 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow from .test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTFeatureExtractor class ImageGPTFeatureExtractionTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size=18, do_normalize=True, ): self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_normalize = do_normalize def prepare_feat_extract_dict(self): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866443634033203, 0.6618829369544983, 0.3891746401786804], [-0.6042559146881104, -0.02295008860528469, 0.5423797369003296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class ImageGPTFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCase): feature_extraction_class = ImageGPTFeatureExtractor if is_vision_available() else None def setUp(self): self.feature_extract_tester = ImageGPTFeatureExtractionTester(self) @property def feat_extract_dict(self): return self.feature_extract_tester.prepare_feat_extract_dict() def test_feat_extract_properties(self): feature_extractor = self.feature_extraction_class(**self.feat_extract_dict) self.assertTrue(hasattr(feature_extractor, "clusters")) self.assertTrue(hasattr(feature_extractor, "do_resize")) self.assertTrue(hasattr(feature_extractor, "size")) self.assertTrue(hasattr(feature_extractor, "do_normalize")) def test_feat_extract_to_json_string(self): feat_extract = self.feature_extraction_class(**self.feat_extract_dict) obj = json.loads(feat_extract.to_json_string()) for key, value in self.feat_extract_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(value, obj[key])) else: self.assertEqual(obj[key], value) def test_feat_extract_to_json_file(self): feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: json_file_path = os.path.join(tmpdirname, "feat_extract.json") feat_extract_first.to_json_file(json_file_path) feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path).to_dict() feat_extract_first = feat_extract_first.to_dict() for key, value in feat_extract_first.items(): if key == "clusters": self.assertTrue(np.array_equal(value, feat_extract_second[key])) else: self.assertEqual(feat_extract_first[key], value) def test_feat_extract_from_and_save_pretrained(self): feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: feat_extract_first.save_pretrained(tmpdirname) feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname).to_dict() feat_extract_first = feat_extract_first.to_dict() for key, value in feat_extract_first.items(): if key == "clusters": self.assertTrue(np.array_equal(value, feat_extract_second[key])) else: self.assertEqual(feat_extract_first[key], value) @unittest.skip("ImageGPT requires clusters at initialization") def test_init_without_params(self): pass def prepare_images(): dataset = load_dataset("hf-internal-testing/fixtures_image_utils", split="test") image1 = Image.open(dataset[4]["file"]) image2 = Image.open(dataset[5]["file"]) images = [image1, image2] return images @require_vision @require_torch class ImageGPTFeatureExtractorIntegrationTest(unittest.TestCase): @slow def test_image(self): feature_extractor = ImageGPTFeatureExtractor.from_pretrained("openai/imagegpt-small") images = prepare_images() # test non-batched encoding = feature_extractor(images[0], return_tensors="pt") self.assertIsInstance(encoding.pixel_values, torch.LongTensor) self.assertEqual(encoding.pixel_values.shape, (1, 1024)) expected_slice = [306, 191, 191] self.assertEqual(encoding.pixel_values[0, :3].tolist(), expected_slice) # test batched encoding = feature_extractor(images, return_tensors="pt") self.assertIsInstance(encoding.pixel_values, torch.LongTensor) self.assertEqual(encoding.pixel_values.shape, (2, 1024)) expected_slice = [303, 13, 13] self.assertEqual(encoding.pixel_values[1, -3:].tolist(), expected_slice)