# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch MaskFormer model. """ import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerFeatureExtractor if is_vision_available(): from PIL import Image class MaskFormerModelTester: def __init__( self, parent, batch_size=2, is_training=True, use_auxiliary_loss=False, num_queries=10, num_channels=3, min_size=32 * 4, max_size=32 * 6, num_labels=4, mask_feature_size=32, ): self.parent = parent self.batch_size = batch_size self.is_training = is_training self.use_auxiliary_loss = use_auxiliary_loss self.num_queries = num_queries self.num_channels = num_channels self.min_size = min_size self.max_size = max_size self.num_labels = num_labels self.mask_feature_size = mask_feature_size def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( torch_device ) pixel_mask = torch.ones([self.batch_size, self.min_size, self.max_size], device=torch_device) mask_labels = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size], device=torch_device) > 0.5 ).float() class_labels = (torch.rand((self.batch_size, self.num_labels), device=torch_device) > 0.5).long() config = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def get_config(self): return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1], ), decoder_config=DetrConfig( decoder_ffn_dim=128, num_queries=self.num_queries, decoder_attention_heads=2, d_model=self.mask_feature_size, ), mask_feature_size=self.mask_feature_size, fpn_feature_size=self.mask_feature_size, num_channels=self.num_channels, num_labels=self.num_labels, ) def prepare_config_and_inputs_for_common(self): config, pixel_values, pixel_mask, _, _ = self.prepare_config_and_inputs() inputs_dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def check_output_hidden_state(self, output, config): encoder_hidden_states = output.encoder_hidden_states pixel_decoder_hidden_states = output.pixel_decoder_hidden_states transformer_decoder_hidden_states = output.transformer_decoder_hidden_states self.parent.assertTrue(len(encoder_hidden_states), len(config.backbone_config.depths)) self.parent.assertTrue(len(pixel_decoder_hidden_states), len(config.backbone_config.depths)) self.parent.assertTrue(len(transformer_decoder_hidden_states), config.decoder_config.decoder_layers) def create_and_check_maskformer_model(self, config, pixel_values, pixel_mask, output_hidden_states=False): with torch.no_grad(): model = MaskFormerModel(config=config) model.to(torch_device) model.eval() output = model(pixel_values=pixel_values, pixel_mask=pixel_mask) output = model(pixel_values, output_hidden_states=True) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape, (self.batch_size, self.num_queries, self.mask_feature_size), ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(output.encoder_last_hidden_state is not None) if output_hidden_states: self.check_output_hidden_state(output, config) def create_and_check_maskformer_instance_segmentation_head_model( self, config, pixel_values, pixel_mask, mask_labels, class_labels ): model = MaskFormerForInstanceSegmentation(config=config) model.to(torch_device) model.eval() def comm_check_on_output(result): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(result.encoder_last_hidden_state is not None) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape, (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4), ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): result = model(pixel_values=pixel_values, pixel_mask=pixel_mask) result = model(pixel_values) comm_check_on_output(result) result = model( pixel_values=pixel_values, pixel_mask=pixel_mask, mask_labels=mask_labels, class_labels=class_labels ) comm_check_on_output(result) self.parent.assertTrue(result.loss is not None) self.parent.assertEqual(result.loss.shape, torch.Size([1])) @require_torch class MaskFormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) is_encoder_decoder = False test_pruning = False test_head_masking = False test_missing_keys = False def setUp(self): self.model_tester = MaskFormerModelTester(self) self.config_tester = ConfigTester(self, config_class=MaskFormerConfig, has_text_modality=False) def test_config(self): self.config_tester.run_common_tests() def test_maskformer_model(self): config, inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(config, **inputs, output_hidden_states=False) def test_maskformer_instance_segmentation_head_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*config_and_inputs) @unittest.skip(reason="MaskFormer does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="MaskFormer does not have a get_input_embeddings method") def test_model_common_attributes(self): pass @unittest.skip(reason="MaskFormer is not a generative model") def test_generate_without_input_ids(self): pass @unittest.skip(reason="MaskFormer does not use token embeddings") def test_resize_tokens_embeddings(self): pass @require_torch_multi_gpu @unittest.skip( reason="MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def test_multi_gpu_data_parallel_forward(self): pass def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) @slow def test_model_from_pretrained(self): for model_name in ["facebook/maskformer-swin-small-coco"]: model = MaskFormerModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_model_with_labels(self): size = (self.model_tester.min_size,) * 2 inputs = { "pixel_values": torch.randn((2, 3, *size), device=torch_device), "mask_labels": torch.randn((2, 10, *size), device=torch_device), "class_labels": torch.zeros(2, 10, device=torch_device).long(), } model = MaskFormerForInstanceSegmentation(MaskFormerConfig()).to(torch_device) outputs = model(**inputs) self.assertTrue(outputs.loss is not None) def test_hidden_states_output(self): config, inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(config, **inputs, output_hidden_states=True) def test_attention_outputs(self): config, inputs = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config).to(torch_device) outputs = model(**inputs, output_attentions=True) self.assertTrue(outputs.attentions is not None) def test_training(self): if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss model_class = self.all_model_classes[1] config, pixel_values, pixel_mask, mask_labels, class_labels = self.model_tester.prepare_config_and_inputs() model = model_class(config) model.to(torch_device) model.train() loss = model(pixel_values, mask_labels=mask_labels, class_labels=class_labels).loss loss.backward() def test_retain_grad_hidden_states_attentions(self): # only MaskFormerForInstanceSegmentation has the loss model_class = self.all_model_classes[1] config, pixel_values, pixel_mask, mask_labels, class_labels = self.model_tester.prepare_config_and_inputs() config.output_hidden_states = True config.output_attentions = True model = model_class(config) model.to(torch_device) model.train() outputs = model(pixel_values, mask_labels=mask_labels, class_labels=class_labels) encoder_hidden_states = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() pixel_decoder_hidden_states = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't transformer_decoder_hidden_states = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() attentions = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=True) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(pixel_decoder_hidden_states.grad) self.assertIsNotNone(transformer_decoder_hidden_states.grad) self.assertIsNotNone(attentions.grad) TOLERANCE = 1e-4 # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_vision @slow class MaskFormerModelIntegrationTest(unittest.TestCase): @cached_property def default_feature_extractor(self): return ( MaskFormerFeatureExtractor.from_pretrained("facebook/maskformer-swin-small-coco") if is_vision_available() else None ) def test_inference_no_head(self): model = MaskFormerModel.from_pretrained("facebook/maskformer-swin-small-coco").to(torch_device) feature_extractor = self.default_feature_extractor image = prepare_img() inputs = feature_extractor(image, return_tensors="pt").to(torch_device) inputs_shape = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(inputs_shape, (1, 3, 800, 1088)) with torch.no_grad(): outputs = model(**inputs) expected_slice_hidden_state = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(torch_device) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3], expected_slice_hidden_state, atol=TOLERANCE ) ) expected_slice_hidden_state = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(torch_device) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3], expected_slice_hidden_state, atol=TOLERANCE ) ) expected_slice_hidden_state = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(torch_device) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3], expected_slice_hidden_state, atol=TOLERANCE ) ) def test_inference_instance_segmentation_head(self): model = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco") .to(torch_device) .eval() ) feature_extractor = self.default_feature_extractor image = prepare_img() inputs = feature_extractor(image, return_tensors="pt").to(torch_device) inputs_shape = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(inputs_shape, (1, 3, 800, 1088)) with torch.no_grad(): outputs = model(**inputs) # masks_queries_logits masks_queries_logits = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape, (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4), ) expected_slice = [ [-1.3737124, -1.7724937, -1.9364233], [-1.5977281, -1.9867939, -2.1523695], [-1.5795398, -1.9269832, -2.093942], ] expected_slice = torch.tensor(expected_slice).to(torch_device) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3], expected_slice, atol=TOLERANCE)) # class_queries_logits class_queries_logits = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape, (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) expected_slice = torch.tensor( [ [1.6512e00, -5.2572e00, -3.3519e00], [3.6169e-02, -5.9025e00, -2.9313e00], [1.0766e-04, -7.7630e00, -5.1263e00], ] ).to(torch_device) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3], expected_slice, atol=TOLERANCE)) def test_inference_instance_segmentation_head_resnet_backbone(self): model = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-resnet101-coco-stuff") .to(torch_device) .eval() ) feature_extractor = self.default_feature_extractor image = prepare_img() inputs = feature_extractor(image, return_tensors="pt").to(torch_device) inputs_shape = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(inputs_shape, (1, 3, 800, 1088)) with torch.no_grad(): outputs = model(**inputs) # masks_queries_logits masks_queries_logits = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape, (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4), ) expected_slice = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] expected_slice = torch.tensor(expected_slice).to(torch_device) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3], expected_slice, atol=TOLERANCE)) # class_queries_logits class_queries_logits = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape, (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) expected_slice = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(torch_device) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3], expected_slice, atol=TOLERANCE)) def test_with_segmentation_maps_and_loss(self): model = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco") .to(torch_device) .eval() ) feature_extractor = self.default_feature_extractor inputs = feature_extractor( [np.zeros((3, 800, 1333)), np.zeros((3, 800, 1333))], segmentation_maps=[np.zeros((384, 384)).astype(np.float32), np.zeros((384, 384)).astype(np.float32)], return_tensors="pt", ) inputs["pixel_values"] = inputs["pixel_values"].to(torch_device) inputs["mask_labels"] = [el.to(torch_device) for el in inputs["mask_labels"]] inputs["class_labels"] = [el.to(torch_device) for el in inputs["class_labels"]] with torch.no_grad(): outputs = model(**inputs) self.assertTrue(outputs.loss is not None)