import argparse from pathlib import Path import torch from rouge_score import rouge_scorer, scoring from tqdm import tqdm from transformers import T5ForConditionalGeneration, T5Tokenizer def chunks(lst, n): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), n): yield lst[i : i + n] def generate_summaries(lns, output_file_path, model_size, batch_size, device): output_file = Path(output_file_path).open("w") model = T5ForConditionalGeneration.from_pretrained(model_size) model.to(device) tokenizer = T5Tokenizer.from_pretrained(model_size) # update config with summarization specific params task_specific_params = model.config.task_specific_params if task_specific_params is not None: model.config.update(task_specific_params.get("summarization", {})) for batch in tqdm(list(chunks(lns, batch_size))): batch = [model.config.prefix + text for text in batch] dct = tokenizer.batch_encode_plus(batch, max_length=512, return_tensors="pt", pad_to_max_length=True) input_ids = dct["input_ids"].to(device) attention_mask = dct["attention_mask"].to(device) summaries = model.generate(input_ids=input_ids, attention_mask=attention_mask) dec = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summaries] for hypothesis in dec: output_file.write(hypothesis + "\n") output_file.flush() def calculate_rouge(output_lns, reference_lns, score_path): score_file = Path(score_path).open("w") scorer = rouge_scorer.RougeScorer(["rouge1", "rouge2", "rougeL"], use_stemmer=True) aggregator = scoring.BootstrapAggregator() for reference_ln, output_ln in zip(reference_lns, output_lns): scores = scorer.score(reference_ln, output_ln) aggregator.add_scores(scores) result = aggregator.aggregate() score_file.write( "ROUGE_1: \n{} \n\n ROUGE_2: \n{} \n\n ROUGE_L: \n{} \n\n".format( result["rouge1"], result["rouge2"], result["rougeL"] ) ) def run_generate(): parser = argparse.ArgumentParser() parser.add_argument( "model_size", type=str, help="T5 model size, either 't5-small', 't5-base', 't5-large', 't5-3b', 't5-11b'. Defaults to 't5-base'.", default="t5-base", ) parser.add_argument( "input_path", type=str, help="like cnn_dm/test_articles_input.txt", ) parser.add_argument( "output_path", type=str, help="where to save summaries", ) parser.add_argument("reference_path", type=str, help="like cnn_dm/test_reference_summaries.txt") parser.add_argument( "score_path", type=str, help="where to save the rouge score", ) parser.add_argument( "--batch_size", type=int, default=8, required=False, help="batch size: how many to summarize at a time", ) parser.add_argument( "--no_cuda", default=False, type=bool, help="Whether to force the execution on CPU.", ) args = parser.parse_args() args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") source_lns = [x.rstrip() for x in open(args.input_path).readlines()] generate_summaries(source_lns, args.output_path, args.model_size, args.batch_size, args.device) output_lns = [x.rstrip() for x in open(args.output_path).readlines()] reference_lns = [x.rstrip() for x in open(args.reference_path).readlines()] calculate_rouge(output_lns, reference_lns, args.score_path) if __name__ == "__main__": run_generate()