# Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import unittest from transformers import LlamaConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device if is_torch_available(): import torch from transformers import ROPE_INIT_FUNCTIONS from transformers.modeling_rope_utils import rope_config_validation @require_torch class RopeTest(unittest.TestCase): def test_rope_validation(self): config = LlamaConfig() all_rope_types = ROPE_INIT_FUNCTIONS.keys() # The base config is always valid (default RoPE) rope_config_validation(config) # If we explicitly set the other RoPE types, then validation should fail for rope_type in all_rope_types: if rope_type != "default": config.rope_scaling = {"rope_type": rope_type} with self.assertRaises(KeyError): rope_config_validation(config) # Parameters are exclusive to their own RoPE type, and should raise an exception if incorrectly passed valid_param_mapping = { "factor": ["linear", "dynamic", "yarn", "longrope"], "attention_factor": ["yarn", "longrope"], "beta_fast": ["yarn"], "beta_slow": ["yarn"], "short_factor": ["longrope"], "long_factor": ["longrope"], } for rope_type in all_rope_types: if rope_type == "default": continue # checked above for param, valid_rope_types in valid_param_mapping.items(): # Set `param` with a dummy value -- we want to test the dict key config.rope_scaling = {"rope_type": rope_type, param: True} if rope_type in valid_rope_types: continue else: with self.assertRaises(KeyError): rope_config_validation(config) # Any other parameters passed to RoPE will raise a warning that a particular key is not used # But sometimes we can have model-specific RoPE kwargs and bypass warning with `ignore_keys` model_specific_kwarg = "mrope_sections" # e,g in Qwen2-VL for rope_type in all_rope_types: if rope_type == "default": config.rope_scaling = {"rope_type": rope_type, model_specific_kwarg: True} rope_config_validation(config, ignore_keys={model_specific_kwarg}) with self.assertLogs("transformers.modeling_rope_utils", level="WARNING") as logs: rope_config_validation(config) self.assertEqual(len(logs.output), 1) self.assertIn(model_specific_kwarg, logs.output[0]) def test_default_rope_function_bc(self): config = LlamaConfig() device = torch_device rope_kwargs = { "rope_type": "default", "dim": config.hidden_size // config.num_attention_heads, "max_position_embeddings": config.max_position_embeddings, "base": config.rope_theta, } rope_fn = ROPE_INIT_FUNCTIONS["default"] config_freqs = rope_fn(config=config, device=device)[0] kwargs_freqs = rope_fn(**rope_kwargs, device=device)[0] torch.testing.assert_close(config_freqs, kwargs_freqs) def test_linear_rope_function_bc(self): config = LlamaConfig() config.rope_scaling = {"rope_type": "linear", "factor": 10.0} device = torch_device rope_kwargs = { "rope_type": "linear", "dim": config.hidden_size // config.num_attention_heads, "max_position_embeddings": config.max_position_embeddings, "base": config.rope_theta, "factor": 10.0, } rope_fn = ROPE_INIT_FUNCTIONS["linear"] config_freqs = rope_fn(config=config, device=device)[0] kwargs_freqs = rope_fn(**rope_kwargs, device=device)[0] torch.testing.assert_close(config_freqs, kwargs_freqs) def test_dynamic_rope_function_bc(self): config = LlamaConfig() config.rope_scaling = {"rope_type": "dynamic", "factor": 10.0} device = torch_device rope_kwargs = { "rope_type": "dynamic", "dim": config.hidden_size // config.num_attention_heads, "max_position_embeddings": config.max_position_embeddings, "base": config.rope_theta, "factor": 10.0, } rope_fn = ROPE_INIT_FUNCTIONS["dynamic"] config_freqs = rope_fn(config=config, device=device)[0] kwargs_freqs = rope_fn(**rope_kwargs, device=device)[0] torch.testing.assert_close(config_freqs, kwargs_freqs) def test_default_rope_numerically(self): # Note: some RoPE scaling methods start off by calling the default RoPE frequencies. If this test fails, then # multiple RoPE strategies will fail. # fmt: off EXPECTED_INV_FREQ = torch.tensor( [ 1.0000e+00, 8.6596e-01, 7.4989e-01, 6.4938e-01, 5.6234e-01, 4.8697e-01, 4.2170e-01, 3.6517e-01, 3.1623e-01, 2.7384e-01, 2.3714e-01, 2.0535e-01, 1.7783e-01, 1.5399e-01, 1.3335e-01, 1.1548e-01, 1.0000e-01, 8.6596e-02, 7.4989e-02, 6.4938e-02, 5.6234e-02, 4.8697e-02, 4.2170e-02, 3.6517e-02, 3.1623e-02, 2.7384e-02, 2.3714e-02, 2.0535e-02, 1.7783e-02, 1.5399e-02, 1.3335e-02, 1.1548e-02, 1.0000e-02, 8.6596e-03, 7.4989e-03, 6.4938e-03, 5.6234e-03, 4.8697e-03, 4.2170e-03, 3.6517e-03, 3.1623e-03, 2.7384e-03, 2.3714e-03, 2.0535e-03, 1.7783e-03, 1.5399e-03, 1.3335e-03, 1.1548e-03, 1.0000e-03, 8.6596e-04, 7.4989e-04, 6.4938e-04, 5.6234e-04, 4.8697e-04, 4.2170e-04, 3.6517e-04, 3.1623e-04, 2.7384e-04, 2.3714e-04, 2.0535e-04, 1.7783e-04, 1.5399e-04, 1.3335e-04, 1.1548e-04 ], device=torch_device ) # fmt: on # input sanity checks: if these change, the output will also change config = LlamaConfig() self.assertEqual(config.rope_scaling, None) self.assertEqual(config.hidden_size, 4096) self.assertEqual(config.num_attention_heads, 32) self.assertEqual(config.rope_theta, 10000.0) self.assertFalse(hasattr(config, "partial_rotary_factor")) rope_fn = ROPE_INIT_FUNCTIONS["default"] inv_freq, attention_scale = rope_fn(config=config, device=torch_device) self.assertEqual(attention_scale, 1.0) # attention scale is always 1 for default RoPE torch.testing.assert_close(inv_freq, EXPECTED_INV_FREQ) def test_linear_rope_numerically(self): # This is a linear scaling strategy, the **frequencies** are scaled linearly with respect to the default # frequencies (= the inverse frequencies are scaled **inversely**) config = LlamaConfig() default_rope_fn = ROPE_INIT_FUNCTIONS["default"] default_inv_freq, _ = default_rope_fn(config=config, device=torch_device) rope_fn = ROPE_INIT_FUNCTIONS["linear"] for factor in (2.0, 10.0, 20.0): config.rope_scaling = {"rope_type": "linear", "factor": factor} inv_freq, attention_scale = rope_fn(config=config, device=torch_device) self.assertEqual(attention_scale, 1.0) # attention scale is always 1 for linear RoPE torch.testing.assert_close(inv_freq, default_inv_freq / factor) def test_dynamic_rope_numerically(self): # fmt: off EXPECTED_INV_FREQ = torch.tensor( [ 1.0000e+00, 8.0931e-01, 6.5498e-01, 5.3008e-01, 4.2900e-01, 3.4720e-01, 2.8099e-01, 2.2741e-01, 1.8404e-01, 1.4895e-01, 1.2055e-01, 9.7558e-02, 7.8955e-02, 6.3899e-02, 5.1714e-02, 4.1853e-02, 3.3872e-02, 2.7413e-02, 2.2185e-02, 1.7955e-02, 1.4531e-02, 1.1760e-02, 9.5176e-03, 7.7027e-03, 6.2339e-03, 5.0451e-03, 4.0831e-03, 3.3045e-03, 2.6744e-03, 2.1644e-03, 1.7517e-03, 1.4176e-03, 1.1473e-03, 9.2852e-04, 7.5146e-04, 6.0817e-04, 4.9220e-04, 3.9834e-04, 3.2238e-04, 2.6091e-04, 2.1115e-04, 1.7089e-04, 1.3830e-04, 1.1193e-04, 9.0585e-05, 7.3312e-05, 5.9332e-05, 4.8018e-05, 3.8861e-05, 3.1451e-05, 2.5453e-05, 2.0600e-05, 1.6672e-05, 1.3492e-05, 1.0920e-05, 8.8374e-06, 7.1522e-06, 5.7883e-06, 4.6845e-06, 3.7912e-06, 3.0683e-06, 2.4832e-06, 2.0097e-06, 1.6265e-06 ], device=torch_device ) # fmt: on # input sanity checks: if these change, the output will also change config = LlamaConfig() self.assertEqual(config.rope_scaling, None) self.assertEqual(config.hidden_size, 4096) self.assertEqual(config.num_attention_heads, 32) self.assertEqual(config.rope_theta, 10000.0) self.assertFalse(hasattr(config, "partial_rotary_factor")) rope_fn = ROPE_INIT_FUNCTIONS["default"] default_inv_freq, _ = rope_fn(config=config, device=torch_device) # Check 1: this is a dynamic scaling strategy, it will not scale unless we provide `seq_len` larger than the # model's original training sequence length rope_fn = ROPE_INIT_FUNCTIONS["dynamic"] for factor in (2.0, 10.0, 20.0): config.rope_scaling = {"rope_type": "dynamic", "factor": factor} inv_freq, attention_scale = rope_fn(config=config, device=torch_device) self.assertEqual(attention_scale, 1.0) # attention scale is always 1 for dynamic RoPE torch.testing.assert_close(inv_freq, default_inv_freq) inv_freq, _ = rope_fn(config=config, device=torch_device, seq_len=1) torch.testing.assert_close(inv_freq, default_inv_freq) # Check 2: if we provide `seq_len` larger than the model's original training sequence length, the frequencies # will scale up (i.e., the inverse frequencies will scale down). factor = 10.0 config.rope_scaling = {"rope_type": "dynamic", "factor": factor} inv_freq, _ = rope_fn(config=config, device=torch_device, seq_len=16384) with self.assertRaises(AssertionError): # It is NOT a linear factor torch.testing.assert_close(inv_freq, default_inv_freq / factor) torch.testing.assert_close(inv_freq, EXPECTED_INV_FREQ) def test_yarn_rope_numerically(self): # fmt: off EXPECTED_INV_FREQ = torch.tensor( [ 1.0000e+00, 8.6596e-01, 7.4989e-01, 6.4938e-01, 5.6234e-01, 4.8697e-01, 4.2170e-01, 3.6517e-01, 3.1623e-01, 2.7384e-01, 2.3714e-01, 2.0535e-01, 1.7783e-01, 1.5399e-01, 1.3335e-01, 1.1548e-01, 1.0000e-01, 8.3479e-02, 6.9590e-02, 5.7925e-02, 4.8136e-02, 3.9931e-02, 3.3061e-02, 2.7315e-02, 2.2515e-02, 1.8512e-02, 1.5177e-02, 1.2403e-02, 1.0101e-02, 8.1924e-03, 6.6143e-03, 5.3120e-03, 4.2400e-03, 3.3599e-03, 2.6396e-03, 2.0520e-03, 1.5746e-03, 1.1882e-03, 8.7713e-04, 6.2810e-04, 4.3007e-04, 2.7384e-04, 2.3714e-04, 2.0535e-04, 1.7783e-04, 1.5399e-04, 1.3335e-04, 1.1548e-04, 1.0000e-04, 8.6596e-05, 7.4989e-05, 6.4938e-05, 5.6234e-05, 4.8697e-05, 4.2170e-05, 3.6517e-05, 3.1623e-05, 2.7384e-05, 2.3714e-05, 2.0535e-05, 1.7783e-05, 1.5399e-05, 1.3335e-05, 1.1548e-05 ], device=torch_device ) # fmt: on # input sanity checks: if these change, the output will also change config = LlamaConfig() self.assertEqual(config.rope_scaling, None) self.assertEqual(config.hidden_size, 4096) self.assertEqual(config.num_attention_heads, 32) self.assertEqual(config.rope_theta, 10000.0) self.assertFalse(hasattr(config, "partial_rotary_factor")) rope_fn = ROPE_INIT_FUNCTIONS["default"] default_inv_freq, _ = rope_fn(config=config, device=torch_device) # Check 1: according to the paper, if `attention_factor` is not specified, then it has a specific default -- # `0.1 * math.log(factor) + 1.0` rope_fn = ROPE_INIT_FUNCTIONS["yarn"] for factor in (2.0, 10.0, 20.0): config.rope_scaling = {"rope_type": "yarn", "factor": factor} _, attention_scale = rope_fn(config=config, device=torch_device) self.assertEqual(attention_scale, 0.1 * math.log(factor) + 1.0) config.rope_scaling = {"rope_type": "yarn", "factor": factor, "attention_factor": 0.5} _, attention_scale = rope_fn(config=config, device=torch_device, seq_len=1) self.assertEqual(attention_scale, 0.5) # Check 2: based on `beta_fast` and `beta_slow`, the frequencies will be scaled between 1 and `factor`. # Increasing `beta_fast` will make RoPE more interpolative (apply scaling), and the other way around. # `beta_slow` behaves the opposite way. Remember: `beta_fast` > `beta_slow` # (note: adds a margin to the test for numerical stability) factor = 10.0 margin = 1e-8 config.rope_scaling = {"rope_type": "yarn", "factor": factor, "beta_fast": 32, "beta_slow": 1} inv_freq, _ = rope_fn(config=config, device=torch_device) is_bounded_by_factor = [ ((default_inv_freq[idx] / factor) - margin) <= yarn_inv_freq_value <= (default_inv_freq[idx] + margin) for idx, yarn_inv_freq_value in enumerate(inv_freq) ] self.assertTrue(all(is_bounded_by_factor)) # super high beta_fast = interpolation (i.e. scaling) in all but the first inverse frequency. The last ~20 # values (empirically checked for `beta_fast` = 1000) should be very small to linear scaling config.rope_scaling = {"rope_type": "yarn", "factor": factor, "beta_fast": 1000, "beta_slow": 1} inv_freq, _ = rope_fn(config=config, device=torch_device) is_interpolating = [ yarn_inv_freq_value < (default_inv_freq[idx] + margin) for idx, yarn_inv_freq_value in enumerate(inv_freq) ] self.assertFalse(is_interpolating[0]) self.assertTrue(all(is_interpolating[1:])) torch.testing.assert_close(inv_freq[-20:], default_inv_freq[-20:] / factor) # Check 3: numerical snapshot to avoid regressions config.rope_scaling = {"rope_type": "yarn", "factor": factor, "beta_fast": 32, "beta_slow": 1} inv_freq, _ = rope_fn(config=config, device=torch_device) torch.testing.assert_close(inv_freq, EXPECTED_INV_FREQ) def test_longrope_rope_numerically(self): # input sanity checks: if these change, the output will also change config = LlamaConfig() self.assertEqual(config.rope_scaling, None) self.assertEqual(config.hidden_size, 4096) self.assertEqual(config.num_attention_heads, 32) self.assertEqual(config.rope_theta, 10000.0) self.assertFalse(hasattr(config, "partial_rotary_factor")) # longrope applies scaling on EACH inv frequency, `short_factor` or `long_factor`, depending on the seq_len dim = config.hidden_size // config.num_attention_heads short_factor = [2.0] * (dim // 2) # scaling applied when seq_len <= max_position_embeddings long_factor = torch.ones(dim // 2).cumsum(0).tolist() # scaling applied when seq_len > max_position_embeddings rope_fn = ROPE_INIT_FUNCTIONS["default"] default_inv_freq, _ = rope_fn(config=config, device=torch_device) # Check 1: according to the paper, if `attention_factor` is not specified, then it has a specific default -- # `math.sqrt(1 + math.log(factor) / math.log(max_position_embeddings))` rope_fn = ROPE_INIT_FUNCTIONS["longrope"] max_position_embeddings = config.max_position_embeddings for factor in (2.0, 10.0, 20.0): config.rope_scaling = { "rope_type": "longrope", "factor": factor, "short_factor": short_factor, "long_factor": long_factor, } _, attention_scale = rope_fn(config=config, device=torch_device) self.assertEqual(attention_scale, math.sqrt(1 + math.log(factor) / math.log(max_position_embeddings))) config.rope_scaling = { "rope_type": "longrope", "factor": factor, "short_factor": short_factor, "long_factor": long_factor, "attention_factor": 0.5, } _, attention_scale = rope_fn(config=config, device=torch_device, seq_len=1) self.assertEqual(attention_scale, 0.5) config.rope_scaling = { "rope_type": "longrope", "factor": factor, "short_factor": short_factor, "long_factor": long_factor, } self.assertEqual(config.rope_scaling.get("attention_factor"), None) # Verify that "TypeError: '<' not supported between instances of 'NoneType' and 'int'" is not raised. rope_config_validation(config) # Check 2: seq_len == 0 -> short factor is applied to the default frequencies config.rope_scaling = { "rope_type": "longrope", "factor": 1.0, "short_factor": short_factor, "long_factor": long_factor, } inv_freq, _ = rope_fn(config=config, device=torch_device, seq_len=0) torch.testing.assert_close(inv_freq, default_inv_freq / torch.tensor(short_factor).to(torch_device)) # Check 3: seq_len > max_position_embeddings -> long factor is applied to the default frequencies inv_freq, _ = rope_fn(config=config, device=torch_device, seq_len=config.max_position_embeddings + 1) torch.testing.assert_close(inv_freq, default_inv_freq / torch.tensor(long_factor).to(torch_device)) def test_llama3_rope_numerically(self): # fmt: off EXPECTED_INV_FREQ = torch.tensor( [ 1.0000e+00, 8.6596e-01, 7.4989e-01, 6.4938e-01, 5.6234e-01, 4.8697e-01, 4.2170e-01, 3.6517e-01, 3.1623e-01, 2.7384e-01, 2.3714e-01, 2.0535e-01, 1.7783e-01, 1.5399e-01, 1.3335e-01, 1.1548e-01, 1.0000e-01, 8.6596e-02, 7.4989e-02, 6.4938e-02, 5.6234e-02, 4.8697e-02, 4.2170e-02, 3.6517e-02, 3.1623e-02, 2.7384e-02, 2.3714e-02, 2.0535e-02, 1.7783e-02, 1.5399e-02, 1.3335e-02, 1.0730e-02, 7.7785e-03, 5.6009e-03, 3.9991e-03, 2.8248e-03, 1.9675e-03, 1.3449e-03, 8.9549e-04, 5.7363e-04, 3.4539e-04, 2.7384e-04, 2.3714e-04, 2.0535e-04, 1.7783e-04, 1.5399e-04, 1.3335e-04, 1.1548e-04, 1.0000e-04, 8.6596e-05, 7.4989e-05, 6.4938e-05, 5.6234e-05, 4.8697e-05, 4.2170e-05, 3.6517e-05, 3.1623e-05, 2.7384e-05, 2.3714e-05, 2.0535e-05, 1.7783e-05, 1.5399e-05, 1.3335e-05, 1.1548e-05 ], device=torch_device ) # fmt: on # input sanity checks: if these change, the output will also change config = LlamaConfig() self.assertEqual(config.rope_scaling, None) self.assertEqual(config.hidden_size, 4096) self.assertEqual(config.num_attention_heads, 32) self.assertEqual(config.rope_theta, 10000.0) self.assertFalse(hasattr(config, "partial_rotary_factor")) rope_fn = ROPE_INIT_FUNCTIONS["default"] default_inv_freq, _ = rope_fn(config=config, device=torch_device) # Check 1: `attention_factor` is always 1 rope_fn = ROPE_INIT_FUNCTIONS["llama3"] for factor in (2.0, 10.0, 20.0): config.rope_scaling = { "rope_type": "llama3", "factor": factor, "original_max_position_embeddings": 2048, "low_freq_factor": 1, "high_freq_factor": 4, } _, attention_scale = rope_fn(config=config, device=torch_device) self.assertEqual(attention_scale, 1.0) # Check 2: based on `low_freq_factor` and `high_freq_factor`, the frequencies will be scaled between 1 and # `factor` (similar to yarn). Low frequencies get scaled by `factor`, high frequencies see no change, medium # frequencies are scaled by a value in between. Changing `low_freq_factor` and `high_freq_factor` changes what # is considered low, medium, and high frequencies. factor = 10.0 config.rope_scaling = { "rope_type": "llama3", "factor": factor, "original_max_position_embeddings": 2048, "low_freq_factor": 1, "high_freq_factor": 4, } inv_freq, _ = rope_fn(config=config, device=torch_device) is_bounded_by_factor = [ (default_inv_freq[idx] / factor) <= llama3_inv_freq_value <= default_inv_freq[idx] for idx, llama3_inv_freq_value in enumerate(inv_freq) ] self.assertTrue(all(is_bounded_by_factor)) # if we change `high_freq_factor` to a very high value, none is considered high-frequency -> ALL values will be # scaled config.rope_scaling = config.rope_scaling = { "rope_type": "llama3", "factor": factor, "original_max_position_embeddings": 2048, "low_freq_factor": 1, "high_freq_factor": 1000, } inv_freq, _ = rope_fn(config=config, device=torch_device) is_scaled = [yarn_inv_freq_value < default_inv_freq[idx] for idx, yarn_inv_freq_value in enumerate(inv_freq)] self.assertTrue(all(is_scaled)) # Check 3: numerical snapshot to avoid regressions config.rope_scaling = { "rope_type": "llama3", "factor": factor, "original_max_position_embeddings": 2048, "low_freq_factor": 1, "high_freq_factor": 4, } inv_freq, _ = rope_fn(config=config, device=torch_device) torch.testing.assert_close(inv_freq, EXPECTED_INV_FREQ)