# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This helper computes the "ideal" number of nodes to use in circle CI. For each job, we compute this parameter and pass it to the `generated_config.yaml`. """ import json import math import os MAX_PARALLEL_NODES = 8 # TODO create a mapping! AVERAGE_TESTS_PER_NODES = 5 def count_lines(filepath): """Count the number of lines in a file.""" try: with open(filepath, "r") as f: return len(f.read().split("\n")) except FileNotFoundError: return 0 def compute_parallel_nodes(line_count, max_tests_per_node=10): """Compute the number of parallel nodes required.""" num_nodes = math.ceil(line_count / AVERAGE_TESTS_PER_NODES) if line_count < 4: return 1 return min(MAX_PARALLEL_NODES, num_nodes) def process_artifacts(input_file, output_file): # Read the JSON data from the input file with open(input_file, "r") as f: data = json.load(f) # Process items and build the new JSON structure transformed_data = {} for item in data.get("items", []): if "test_list" in item["path"]: key = os.path.splitext(os.path.basename(item["path"]))[0] transformed_data[key] = item["url"] parallel_key = key.split("_test")[0] + "_parallelism" file_path = os.path.join("test_preparation", f"{key}.txt") line_count = count_lines(file_path) transformed_data[parallel_key] = compute_parallel_nodes(line_count) # Remove the "generated_config" key if it exists if "generated_config" in transformed_data: del transformed_data["generated_config"] # Write the transformed data to the output file with open(output_file, "w") as f: json.dump(transformed_data, f, indent=2) if __name__ == "__main__": input_file = "test_preparation/artifacts.json" output_file = "test_preparation/transformed_artifacts.json" process_artifacts(input_file, output_file)