# Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_torchvision_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import Swin2SRImageProcessor if is_torchvision_available(): from transformers import Swin2SRImageProcessorFast from transformers.image_transforms import get_image_size class Swin2SRImageProcessingTester: def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_rescale=True, rescale_factor=1 / 255, do_pad=True, pad_size=8, ): self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_pad = do_pad self.pad_size = pad_size def prepare_image_processor_dict(self): return { "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, "pad_size": self.pad_size, } def expected_output_image_shape(self, images): img = images[0] if isinstance(img, Image.Image): input_width, input_height = img.size elif isinstance(img, np.ndarray): input_height, input_width = img.shape[-3:-1] else: input_height, input_width = img.shape[-2:] pad_height = (input_height // self.pad_size + 1) * self.pad_size - input_height pad_width = (input_width // self.pad_size + 1) * self.pad_size - input_width return self.num_channels, input_height + pad_height, input_width + pad_width def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class Swin2SRImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = Swin2SRImageProcessor if is_vision_available() else None fast_image_processing_class = Swin2SRImageProcessorFast if is_torchvision_available() else None def setUp(self): super().setUp() self.image_processor_tester = Swin2SRImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): for image_processing_class in self.image_processor_list: image_processing = image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "do_rescale")) self.assertTrue(hasattr(image_processing, "rescale_factor")) self.assertTrue(hasattr(image_processing, "do_pad")) self.assertTrue(hasattr(image_processing, "pad_size")) def calculate_expected_size(self, image): old_height, old_width = get_image_size(image) size = self.image_processor_tester.pad_size pad_height = (old_height // size + 1) * size - old_height pad_width = (old_width // size + 1) * size - old_width return old_height + pad_height, old_width + pad_width # Swin2SRImageProcessor does not support batched input def test_call_pil(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PIL images image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False) for image in image_inputs: self.assertIsInstance(image, Image.Image) # Test not batched input encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]]) self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape)) # Swin2SRImageProcessor does not support batched input def test_call_numpy(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True) for image in image_inputs: self.assertIsInstance(image, np.ndarray) # Test not batched input encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]]) self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape)) # Swin2SRImageProcessor does not support batched input def test_call_numpy_4_channels(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors self.image_processor_tester.num_channels = 4 image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True) for image in image_inputs: self.assertIsInstance(image, np.ndarray) # Test not batched input encoded_images = image_processing( image_inputs[0], return_tensors="pt", input_data_format="channels_last" ).pixel_values expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]]) self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape)) self.image_processor_tester.num_channels = 3 # Swin2SRImageProcessor does not support batched input def test_call_pytorch(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True) for image in image_inputs: self.assertIsInstance(image, torch.Tensor) # Test not batched input encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]]) self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape)) @unittest.skip(reason="No speed gain on CPU due to minimal processing.") def test_fast_is_faster_than_slow(self): pass def test_slow_fast_equivalence_batched(self): image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True, torchify=True) image_processor_slow = self.image_processing_class(**self.image_processor_dict) image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict) encoded_slow = image_processor_slow(image_inputs, return_tensors="pt") encoded_fast = image_processor_fast(image_inputs, return_tensors="pt") self._assert_slow_fast_tensors_equivalence(encoded_slow.pixel_values, encoded_fast.pixel_values)