# Copyright 2018 Salesforce and HuggingFace Inc. team. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from functools import lru_cache from transformers.models.bertweet.tokenization_bertweet import VOCAB_FILES_NAMES, BertweetTokenizer from ...test_tokenization_common import TokenizerTesterMixin, use_cache_if_possible class BertweetTokenizationTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "vinai/bertweet-base" tokenizer_class = BertweetTokenizer test_rust_tokenizer = False @classmethod def setUpClass(cls): super().setUpClass() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt vocab = ["I", "m", "V@@", "R@@", "r", "e@@"] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "a m"] cls.special_tokens_map = {"unk_token": ""} cls.vocab_file = os.path.join(cls.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) cls.merges_file = os.path.join(cls.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(cls.vocab_file, "w", encoding="utf-8") as fp: for token in vocab_tokens: fp.write(f"{token} {vocab_tokens[token]}\n") with open(cls.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) @classmethod @use_cache_if_possible @lru_cache(maxsize=64) def get_tokenizer(cls, pretrained_name=None, **kwargs): kwargs.update(cls.special_tokens_map) pretrained_name = pretrained_name or cls.tmpdirname return BertweetTokenizer.from_pretrained(pretrained_name, **kwargs) def get_input_output_texts(self, tokenizer): input_text = "I am VinAI Research" output_text = "I m V I Re e " return input_text, output_text def test_full_tokenizer(self): tokenizer = BertweetTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map) text = "I am VinAI Research" bpe_tokens = "I a@@ m V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() tokens = tokenizer.tokenize(text) self.assertListEqual(tokens, bpe_tokens) input_tokens = tokens + [tokenizer.unk_token] input_bpe_tokens = [4, 3, 5, 6, 3, 3, 3, 4, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)